File size: 7,645 Bytes
0a88b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import cv2
import numpy as np
from skimage.metrics import hausdorff_distance
from matplotlib import pyplot as plt


def get_input_imgs_path(input_data_dir):
    path = {}
    names = ['000', 'ori_000']
    for name in names:
        jpg_path = os.path.join(input_data_dir, f"{name}.jpg")
        png_path = os.path.join(input_data_dir, f"{name}.png")
        if os.path.exists(jpg_path):
            path[name] = jpg_path
        elif os.path.exists(png_path):
            path[name] = png_path
    return path


def rgba_to_rgb(image, bg_color=[255, 255, 255]):
    if image.shape[-1] == 3: return image
        
    rgba = image.astype(float)
    rgb = rgba[:, :, :3].copy()
    alpha = rgba[:, :, 3] / 255.0

    bg = np.ones((image.shape[0], image.shape[1], 3), dtype=np.float32) 
    bg = bg * np.array(bg_color, dtype=np.float32)

    rgb = rgb * alpha[:, :, np.newaxis] + bg * (1 - alpha[:, :, np.newaxis])
    rgb = rgb.astype(np.uint8)
    
    return rgb


def resize_with_aspect_ratio(image1, image2, pad_value=[255, 255, 255]):
    aspect_ratio1 = float(image1.shape[1]) / float(image1.shape[0])
    aspect_ratio2 = float(image2.shape[1]) / float(image2.shape[0])

    top_pad, bottom_pad, left_pad, right_pad = 0, 0, 0, 0
    
    if aspect_ratio1 < aspect_ratio2:
        new_width = (aspect_ratio2 * image1.shape[0])
        right_pad = left_pad = int((new_width - image1.shape[1]) / 2)
    else:
        new_height = (image1.shape[1] / aspect_ratio2)
        bottom_pad = top_pad = int((new_height - image1.shape[0]) / 2)

    image1_padded = cv2.copyMakeBorder(
        image1, top_pad, bottom_pad, left_pad, right_pad, cv2.BORDER_CONSTANT, value=pad_value
    )
    return image1_padded


def estimate_img_mask(image):
    # 转换为灰度图像
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # 使用大津法进行阈值分割
    # _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    # mask_otsu = thresh.astype(bool)
    # thresh_gray = 240

    # 使用 Canny 边缘检测算法找到边缘
    edges = cv2.Canny(gray, 20, 50)

    # 使用形态学操作扩展边缘
    kernel = np.ones((3, 3), np.uint8)
    edges_dilated = cv2.dilate(edges, kernel, iterations=1)

    contours, _ = cv2.findContours(edges_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # 创建一个空的 mask
    mask = np.zeros_like(gray, dtype=np.uint8)

    # 根据轮廓信息填充 mask(使用 thickness=cv2.FILLED 参数)
    cv2.drawContours(mask, contours, -1, 255, thickness=cv2.FILLED)
    mask = mask.astype(bool)

    return mask


def compute_img_diff(img1, img2, matches1, matches1_from_2, vis=False):
    scale = 0.125
    gray_trunc_thres = 25 / 255.0

    # Match
    if matches1.shape[0] > 0:
        match_scale = np.max(np.ptp(matches1, axis=-1))
        match_dists = np.sqrt(np.sum((matches1 - matches1_from_2) ** 2, axis=-1))
        dist_threshold = match_scale * 0.01
        match_num = np.sum(match_dists <= dist_threshold)
        match_rate = np.mean(match_dists <= dist_threshold)
    else:
        match_num = 0
        match_rate = 0

    # IOU
    img1_mask = estimate_img_mask(img1)
    img2_mask = estimate_img_mask(img2)
    img_intersection = (img1_mask == 1) & (img2_mask == 1)
    img_union = (img1_mask == 1) | (img2_mask == 1)
    intersection = np.sum(img_intersection == 1)
    union = np.sum(img_union == 1)
    mask_iou = intersection / union if union != 0 else 0

    # Gray
    height, width = img1.shape[:2]
    img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
    img1_gray = cv2.GaussianBlur(img1_gray, (7, 7), 0)
    img2_gray = cv2.GaussianBlur(img2_gray, (7, 7), 0)

    # Gray Diff
    img1_gray_small = cv2.resize(img1_gray, (int(width * scale), int(height * scale)),
                                 interpolation=cv2.INTER_LINEAR) / 255.0
    img2_gray_small = cv2.resize(img2_gray, (int(width * scale), int(height * scale)),
                                 interpolation=cv2.INTER_LINEAR) / 255.0
    img_gray_small_diff = np.abs(img1_gray_small - img2_gray_small)
    gray_diff = img_gray_small_diff.sum() / (union * scale) if union != 0 else 1

    img_gray_small_diff_trunc = img_gray_small_diff.copy()
    img_gray_small_diff_trunc[img_gray_small_diff < gray_trunc_thres] = 0
    gray_diff_trunc = img_gray_small_diff_trunc.sum() / (union * scale) if union != 0 else 1

    # Edge
    img1_edge = cv2.Canny(img1_gray, 100, 200)
    img2_edge = cv2.Canny(img2_gray, 100, 200)
    bw_edges1 = (img1_edge > 0).astype(bool)
    bw_edges2 = (img2_edge > 0).astype(bool)
    hausdorff_dist = hausdorff_distance(bw_edges1, bw_edges2)
    if vis == True:
        fig, axs = plt.subplots(1, 4, figsize=(15, 5))
        axs[0].imshow(img1_gray, cmap='gray')
        axs[0].set_title('Img1')
        axs[1].imshow(img2_gray, cmap='gray')
        axs[1].set_title('Img2')
        axs[2].imshow(img1_mask)
        axs[2].set_title('Mask1')
        axs[3].imshow(img2_mask)
        axs[3].set_title('Mask2')
        plt.show()
        plt.figure()
        mask_cmp = np.zeros((height, width, 3))
        mask_cmp[img_intersection, 1] = 1
        mask_cmp[img_union, 0] = 1
        plt.imshow(mask_cmp)
        plt.show()
        fig, axs = plt.subplots(1, 4, figsize=(15, 5))
        axs[0].imshow(img1_gray_small, cmap='gray')
        axs[0].set_title('Img1 Gray')
        axs[1].imshow(img2_gray_small, cmap='gray')
        axs[1].set_title('Img2 Gary')
        axs[2].imshow(img_gray_small_diff, cmap='gray')
        axs[2].set_title('diff')
        axs[3].imshow(img_gray_small_diff_trunc, cmap='gray')
        axs[3].set_title('diff_trunct')
        plt.show()
        fig, axs = plt.subplots(1, 2, figsize=(15, 5))
        axs[0].imshow(img1_edge, cmap='gray')
        axs[0].set_title('img1_edge')
        axs[1].imshow(img2_edge, cmap='gray')
        axs[1].set_title('img2_edge')
        plt.show()

    info = {}
    info['match_num'] = match_num
    info['match_rate'] = match_rate
    info['mask_iou'] = mask_iou
    info['gray_diff'] = gray_diff
    info['gray_diff_trunc'] = gray_diff_trunc
    info['hausdorff_dist'] = hausdorff_dist
    return info


def predict_match_success_human(info):
    match_num = info['match_num']
    match_rate = info['match_rate']
    mask_iou = info['mask_iou']
    gray_diff = info['gray_diff']
    gray_diff_trunc = info['gray_diff_trunc']
    hausdorff_dist = info['hausdorff_dist']

    if mask_iou > 0.95:
        return True

    if match_num < 20 or match_rate < 0.7:
        return False

    if mask_iou > 0.80 and gray_diff < 0.040 and gray_diff_trunc < 0.010:
        return True

    if mask_iou > 0.70 and gray_diff < 0.050 and gray_diff_trunc < 0.008:
        return True

    '''

    if match_rate<0.70 or match_num<3000:

        return False



    if (mask_iou>0.85 and hausdorff_dist<20)or (gray_diff<0.015 and gray_diff_trunc<0.01) or match_rate>=0.90:

        return True

    '''

    return False


def predict_match_success(info, model=None):
    if model == None:
        return predict_match_success_human(info)
    else:
        feat_name = ['match_num', 'match_rate', 'mask_iou', 'gray_diff', 'gray_diff_trunc', 'hausdorff_dist']
        # 提取特征
        features = [info[f] for f in feat_name]
        # 预测
        pred = model.predict([features])[0]
        return pred >= 0.5