Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,480 Bytes
e67f19a d1856b7 e67f19a 96a99df d1856b7 e67f19a d1856b7 96a99df d1856b7 f3f2187 e67f19a abf941c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
import random
import uuid
from datetime import datetime
from diffusers import DiffusionPipeline
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
# Create permanent storage directory for Flux generated images
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Image.Image:
processed_image = trellis_pipeline.preprocess_image(image)
return processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def generate_flux_image(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Image.Image:
"""Generate image using Flux pipeline"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = flux_pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
return image
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = trellis_pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("""
## Game Asset Generation to 3D with FLUX and TRELLIS
* Enter a prompt to generate a game asset image, then convert it to 3D
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
""")
with gr.Row():
with gr.Column():
# Flux image generation inputs
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
with gr.Accordion("Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(256, 1024, label="Width", value=768, step=32)
height = gr.Slider(256, 1024, label="Height", value=768, step=32)
with gr.Row():
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
with gr.Accordion("3D Generation Settings", open=False):
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
with gr.Column():
generated_image = gr.Image(label="Generated Asset", type="pil")
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
model_output = LitModel3D(label="Extracted GLB/Gaussian")
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
output_buf = gr.State()
# Event handlers
demo.load(start_session)
demo.unload(end_session)
generate_btn.click(
generate_flux_image,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
outputs=[generated_image],
).then(
image_to_3d,
inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_gs],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Initialize both pipelines
if __name__ == "__main__":
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
# Initialize Flux pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
dtype = torch.bfloat16
file_url = "https://huggingface.co./gokaygokay/flux-game/blob/main/gokaygokay_00001_.q5_1.gguf"
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
if ".gguf" in file_url:
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
else:
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
# Initialize Trellis pipeline
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
trellis_pipeline.cuda()
try:
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch() |