File size: 12,480 Bytes
e67f19a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1856b7
e67f19a
 
 
 
 
 
 
96a99df
d1856b7
e67f19a
 
 
d1856b7
96a99df
d1856b7
 
 
f3f2187
e67f19a
 
 
 
 
 
 
 
 
abf941c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
import random
import uuid
from datetime import datetime
from diffusers import DiffusionPipeline

os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

# Create permanent storage directory for Flux generated images
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)

def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)

def preprocess_image(image: Image.Image) -> Image.Image:
    processed_image = trellis_pipeline.preprocess_image(image)
    return processed_image

def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }

def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh

def get_seed(randomize_seed: bool, seed: int) -> int:
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

@spaces.GPU
def generate_flux_image(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Image.Image:
    """Generate image using Flux pipeline"""
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = flux_pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    image.save(filepath)
    
    return image

@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    outputs = trellis_pipeline.run(
        image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path

@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path

@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("""
    ## Game Asset Generation to 3D with FLUX and TRELLIS
    * Enter a prompt to generate a game asset image, then convert it to 3D
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    """)
    
    with gr.Row():
        with gr.Column():
            # Flux image generation inputs
            prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
            with gr.Accordion("Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                with gr.Row():
                    width = gr.Slider(256, 1024, label="Width", value=768, step=32)
                    height = gr.Slider(256, 1024, label="Height", value=768, step=32)
                with gr.Row():
                    guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
                    num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
                    lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)

            with gr.Accordion("3D Generation Settings", open=False):
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)

            generate_btn = gr.Button("Generate")
            
            with gr.Accordion("GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)

        with gr.Column():
            generated_image = gr.Image(label="Generated Asset", type="pil")
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
            model_output = LitModel3D(label="Extracted GLB/Gaussian")
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)

    output_buf = gr.State()

    # Event handlers
    demo.load(start_session)
    demo.unload(end_session)

    generate_btn.click(
        generate_flux_image,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
        outputs=[generated_image],
    ).then(
        image_to_3d,
        inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )

# Initialize both pipelines
if __name__ == "__main__":
    from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
    from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
    
    # Initialize Flux pipeline
    device = "cuda" if torch.cuda.is_available() else "cpu"
    huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
    
    dtype = torch.bfloat16
    file_url = "https://huggingface.co./gokaygokay/flux-game/blob/main/gokaygokay_00001_.q5_1.gguf"
    file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
    single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
    quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
    text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
    if ".gguf" in file_url:
        transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
    else:
        quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
        transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
    flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)

    # Initialize Trellis pipeline
    trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    trellis_pipeline.cuda()
    try:
        trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
    except:
        pass
    
    demo.launch()