Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Commit
·
abf941c
1
Parent(s):
b385a4f
trellis first
Browse files
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
from gradio_litmodel3d import LitModel3D
|
4 |
-
|
5 |
import os
|
6 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
7 |
os.environ['SPCONV_ALGO'] = 'native'
|
8 |
from typing import *
|
9 |
import torch
|
@@ -15,51 +19,28 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
|
18 |
-
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def start_session(req: gr.Request):
|
25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
26 |
os.makedirs(user_dir, exist_ok=True)
|
27 |
-
|
28 |
-
|
29 |
def end_session(req: gr.Request):
|
30 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
31 |
shutil.rmtree(user_dir)
|
32 |
|
33 |
-
|
34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
-
|
36 |
-
Preprocess the input image.
|
37 |
-
|
38 |
-
Args:
|
39 |
-
image (Image.Image): The input image.
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
Image.Image: The preprocessed image.
|
43 |
-
"""
|
44 |
-
processed_image = pipeline.preprocess_image(image)
|
45 |
return processed_image
|
46 |
|
47 |
-
|
48 |
-
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
49 |
-
"""
|
50 |
-
Preprocess a list of input images.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
images (List[Tuple[Image.Image, str]]): The input images.
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
List[Image.Image]: The preprocessed images.
|
57 |
-
"""
|
58 |
-
images = [image[0] for image in images]
|
59 |
-
processed_images = [pipeline.preprocess_image(image) for image in images]
|
60 |
-
return processed_images
|
61 |
-
|
62 |
-
|
63 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
64 |
return {
|
65 |
'gaussian': {
|
@@ -75,9 +56,8 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
75 |
'faces': mesh.faces.cpu().numpy(),
|
76 |
},
|
77 |
}
|
78 |
-
|
79 |
-
|
80 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
81 |
gs = Gaussian(
|
82 |
aabb=state['gaussian']['aabb'],
|
83 |
sh_degree=state['gaussian']['sh_degree'],
|
@@ -99,77 +79,69 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
99 |
|
100 |
return gs, mesh
|
101 |
|
102 |
-
|
103 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
104 |
-
"""
|
105 |
-
Get the random seed.
|
106 |
-
"""
|
107 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
@spaces.GPU
|
111 |
def image_to_3d(
|
112 |
image: Image.Image,
|
113 |
-
multiimages: List[Tuple[Image.Image, str]],
|
114 |
-
is_multiimage: bool,
|
115 |
seed: int,
|
116 |
ss_guidance_strength: float,
|
117 |
ss_sampling_steps: int,
|
118 |
slat_guidance_strength: float,
|
119 |
slat_sampling_steps: int,
|
120 |
-
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
121 |
req: gr.Request,
|
122 |
) -> Tuple[dict, str]:
|
123 |
-
"""
|
124 |
-
Convert an image to a 3D model.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
image (Image.Image): The input image.
|
128 |
-
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
129 |
-
is_multiimage (bool): Whether is in multi-image mode.
|
130 |
-
seed (int): The random seed.
|
131 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
132 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
133 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
134 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
135 |
-
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
dict: The information of the generated 3D model.
|
139 |
-
str: The path to the video of the 3D model.
|
140 |
-
"""
|
141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
)
|
157 |
-
else:
|
158 |
-
outputs = pipeline.run_multi_image(
|
159 |
-
[image[0] for image in multiimages],
|
160 |
-
seed=seed,
|
161 |
-
formats=["gaussian", "mesh"],
|
162 |
-
preprocess_image=False,
|
163 |
-
sparse_structure_sampler_params={
|
164 |
-
"steps": ss_sampling_steps,
|
165 |
-
"cfg_strength": ss_guidance_strength,
|
166 |
-
},
|
167 |
-
slat_sampler_params={
|
168 |
-
"steps": slat_sampling_steps,
|
169 |
-
"cfg_strength": slat_guidance_strength,
|
170 |
-
},
|
171 |
-
mode=multiimage_algo,
|
172 |
-
)
|
173 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
174 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
175 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
@@ -179,7 +151,6 @@ def image_to_3d(
|
|
179 |
torch.cuda.empty_cache()
|
180 |
return state, video_path
|
181 |
|
182 |
-
|
183 |
@spaces.GPU(duration=90)
|
184 |
def extract_glb(
|
185 |
state: dict,
|
@@ -187,17 +158,6 @@ def extract_glb(
|
|
187 |
texture_size: int,
|
188 |
req: gr.Request,
|
189 |
) -> Tuple[str, str]:
|
190 |
-
"""
|
191 |
-
Extract a GLB file from the 3D model.
|
192 |
-
|
193 |
-
Args:
|
194 |
-
state (dict): The state of the generated 3D model.
|
195 |
-
mesh_simplify (float): The mesh simplification factor.
|
196 |
-
texture_size (int): The texture resolution.
|
197 |
-
|
198 |
-
Returns:
|
199 |
-
str: The path to the extracted GLB file.
|
200 |
-
"""
|
201 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
202 |
gs, mesh = unpack_state(state)
|
203 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
@@ -206,18 +166,8 @@ def extract_glb(
|
|
206 |
torch.cuda.empty_cache()
|
207 |
return glb_path, glb_path
|
208 |
|
209 |
-
|
210 |
@spaces.GPU
|
211 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
212 |
-
"""
|
213 |
-
Extract a Gaussian file from the 3D model.
|
214 |
-
|
215 |
-
Args:
|
216 |
-
state (dict): The state of the generated 3D model.
|
217 |
-
|
218 |
-
Returns:
|
219 |
-
str: The path to the extracted Gaussian file.
|
220 |
-
"""
|
221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
222 |
gs, _ = unpack_state(state)
|
223 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
@@ -225,61 +175,30 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
225 |
torch.cuda.empty_cache()
|
226 |
return gaussian_path, gaussian_path
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
231 |
-
images = []
|
232 |
-
for case in multi_case:
|
233 |
-
_images = []
|
234 |
-
for i in range(1, 4):
|
235 |
-
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
|
236 |
-
W, H = img.size
|
237 |
-
img = img.resize((int(W / H * 512), 512))
|
238 |
-
_images.append(np.array(img))
|
239 |
-
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
240 |
-
return images
|
241 |
-
|
242 |
-
|
243 |
-
def split_image(image: Image.Image) -> List[Image.Image]:
|
244 |
-
"""
|
245 |
-
Split an image into multiple views.
|
246 |
-
"""
|
247 |
-
image = np.array(image)
|
248 |
-
alpha = image[..., 3]
|
249 |
-
alpha = np.any(alpha>0, axis=0)
|
250 |
-
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
251 |
-
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
252 |
-
images = []
|
253 |
-
for s, e in zip(start_pos, end_pos):
|
254 |
-
images.append(Image.fromarray(image[:, s:e+1]))
|
255 |
-
return [preprocess_image(image) for image in images]
|
256 |
-
|
257 |
-
|
258 |
-
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
259 |
gr.Markdown("""
|
260 |
-
##
|
261 |
-
*
|
262 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
263 |
-
|
264 |
-
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
265 |
""")
|
266 |
|
267 |
with gr.Row():
|
268 |
with gr.Column():
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
274 |
-
gr.Markdown("""
|
275 |
-
Input different views of the object in separate images.
|
276 |
-
|
277 |
-
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
278 |
-
""")
|
279 |
-
|
280 |
-
with gr.Accordion(label="Generation Settings", open=False):
|
281 |
-
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
282 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
284 |
with gr.Row():
|
285 |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
@@ -288,97 +207,45 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
288 |
with gr.Row():
|
289 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
290 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
291 |
-
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
292 |
|
293 |
generate_btn = gr.Button("Generate")
|
294 |
|
295 |
-
with gr.Accordion(
|
296 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
297 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
298 |
|
299 |
with gr.Row():
|
300 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
301 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
302 |
-
gr.Markdown("""
|
303 |
-
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
304 |
-
""")
|
305 |
|
306 |
with gr.Column():
|
307 |
-
|
308 |
-
|
|
|
309 |
|
310 |
with gr.Row():
|
311 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
312 |
-
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
313 |
-
|
314 |
-
is_multiimage = gr.State(False)
|
315 |
-
output_buf = gr.State()
|
316 |
|
317 |
-
|
318 |
-
with gr.Row() as single_image_example:
|
319 |
-
examples = gr.Examples(
|
320 |
-
examples=[
|
321 |
-
f'assets/example_image/{image}'
|
322 |
-
for image in os.listdir("assets/example_image")
|
323 |
-
],
|
324 |
-
inputs=[image_prompt],
|
325 |
-
fn=preprocess_image,
|
326 |
-
outputs=[image_prompt],
|
327 |
-
run_on_click=True,
|
328 |
-
examples_per_page=64,
|
329 |
-
)
|
330 |
-
with gr.Row(visible=False) as multiimage_example:
|
331 |
-
examples_multi = gr.Examples(
|
332 |
-
examples=prepare_multi_example(),
|
333 |
-
inputs=[image_prompt],
|
334 |
-
fn=split_image,
|
335 |
-
outputs=[multiimage_prompt],
|
336 |
-
run_on_click=True,
|
337 |
-
examples_per_page=8,
|
338 |
-
)
|
339 |
|
340 |
-
#
|
341 |
demo.load(start_session)
|
342 |
demo.unload(end_session)
|
343 |
-
|
344 |
-
single_image_input_tab.select(
|
345 |
-
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
346 |
-
outputs=[is_multiimage, single_image_example, multiimage_example]
|
347 |
-
)
|
348 |
-
multiimage_input_tab.select(
|
349 |
-
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
350 |
-
outputs=[is_multiimage, single_image_example, multiimage_example]
|
351 |
-
)
|
352 |
-
|
353 |
-
image_prompt.upload(
|
354 |
-
preprocess_image,
|
355 |
-
inputs=[image_prompt],
|
356 |
-
outputs=[image_prompt],
|
357 |
-
)
|
358 |
-
multiimage_prompt.upload(
|
359 |
-
preprocess_images,
|
360 |
-
inputs=[multiimage_prompt],
|
361 |
-
outputs=[multiimage_prompt],
|
362 |
-
)
|
363 |
|
364 |
generate_btn.click(
|
365 |
-
|
366 |
-
inputs=[randomize_seed,
|
367 |
-
outputs=[
|
368 |
).then(
|
369 |
image_to_3d,
|
370 |
-
inputs=[
|
371 |
outputs=[output_buf, video_output],
|
372 |
).then(
|
373 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
374 |
outputs=[extract_glb_btn, extract_gs_btn],
|
375 |
)
|
376 |
|
377 |
-
video_output.clear(
|
378 |
-
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
379 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
380 |
-
)
|
381 |
-
|
382 |
extract_glb_btn.click(
|
383 |
extract_glb,
|
384 |
inputs=[output_buf, mesh_simplify, texture_size],
|
@@ -401,14 +268,24 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
401 |
lambda: gr.Button(interactive=False),
|
402 |
outputs=[download_glb],
|
403 |
)
|
404 |
-
|
405 |
|
406 |
-
#
|
407 |
if __name__ == "__main__":
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
try:
|
411 |
-
|
412 |
except:
|
413 |
pass
|
414 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
from gradio_litmodel3d import LitModel3D
|
|
|
4 |
import os
|
5 |
import shutil
|
6 |
+
import random
|
7 |
+
import uuid
|
8 |
+
from datetime import datetime
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
|
11 |
os.environ['SPCONV_ALGO'] = 'native'
|
12 |
from typing import *
|
13 |
import torch
|
|
|
19 |
from trellis.representations import Gaussian, MeshExtractResult
|
20 |
from trellis.utils import render_utils, postprocessing_utils
|
21 |
|
22 |
+
# Constants
|
23 |
MAX_SEED = np.iinfo(np.int32).max
|
24 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
25 |
os.makedirs(TMP_DIR, exist_ok=True)
|
26 |
|
27 |
+
# Create permanent storage directory for Flux generated images
|
28 |
+
SAVE_DIR = "saved_images"
|
29 |
+
if not os.path.exists(SAVE_DIR):
|
30 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
31 |
|
32 |
def start_session(req: gr.Request):
|
33 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
34 |
os.makedirs(user_dir, exist_ok=True)
|
35 |
+
|
|
|
36 |
def end_session(req: gr.Request):
|
37 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
38 |
shutil.rmtree(user_dir)
|
39 |
|
|
|
40 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
41 |
+
processed_image = trellis_pipeline.preprocess_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
return processed_image
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
45 |
return {
|
46 |
'gaussian': {
|
|
|
56 |
'faces': mesh.faces.cpu().numpy(),
|
57 |
},
|
58 |
}
|
59 |
+
|
60 |
+
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
|
|
61 |
gs = Gaussian(
|
62 |
aabb=state['gaussian']['aabb'],
|
63 |
sh_degree=state['gaussian']['sh_degree'],
|
|
|
79 |
|
80 |
return gs, mesh
|
81 |
|
|
|
82 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
|
|
|
|
83 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
84 |
|
85 |
+
def generate_flux_image(
|
86 |
+
prompt: str,
|
87 |
+
seed: int,
|
88 |
+
randomize_seed: bool,
|
89 |
+
width: int,
|
90 |
+
height: int,
|
91 |
+
guidance_scale: float,
|
92 |
+
num_inference_steps: int,
|
93 |
+
lora_scale: float,
|
94 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
95 |
+
) -> Image.Image:
|
96 |
+
"""Generate image using Flux pipeline"""
|
97 |
+
if randomize_seed:
|
98 |
+
seed = random.randint(0, MAX_SEED)
|
99 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
100 |
+
|
101 |
+
image = flux_pipeline(
|
102 |
+
prompt=prompt,
|
103 |
+
guidance_scale=guidance_scale,
|
104 |
+
num_inference_steps=num_inference_steps,
|
105 |
+
width=width,
|
106 |
+
height=height,
|
107 |
+
generator=generator,
|
108 |
+
joint_attention_kwargs={"scale": lora_scale},
|
109 |
+
).images[0]
|
110 |
+
|
111 |
+
# Save the generated image
|
112 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
113 |
+
unique_id = str(uuid.uuid4())[:8]
|
114 |
+
filename = f"{timestamp}_{unique_id}.png"
|
115 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
116 |
+
image.save(filepath)
|
117 |
+
|
118 |
+
return image
|
119 |
|
120 |
@spaces.GPU
|
121 |
def image_to_3d(
|
122 |
image: Image.Image,
|
|
|
|
|
123 |
seed: int,
|
124 |
ss_guidance_strength: float,
|
125 |
ss_sampling_steps: int,
|
126 |
slat_guidance_strength: float,
|
127 |
slat_sampling_steps: int,
|
|
|
128 |
req: gr.Request,
|
129 |
) -> Tuple[dict, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
131 |
+
outputs = trellis_pipeline.run(
|
132 |
+
image,
|
133 |
+
seed=seed,
|
134 |
+
formats=["gaussian", "mesh"],
|
135 |
+
preprocess_image=False,
|
136 |
+
sparse_structure_sampler_params={
|
137 |
+
"steps": ss_sampling_steps,
|
138 |
+
"cfg_strength": ss_guidance_strength,
|
139 |
+
},
|
140 |
+
slat_sampler_params={
|
141 |
+
"steps": slat_sampling_steps,
|
142 |
+
"cfg_strength": slat_guidance_strength,
|
143 |
+
},
|
144 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
146 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
147 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
|
|
151 |
torch.cuda.empty_cache()
|
152 |
return state, video_path
|
153 |
|
|
|
154 |
@spaces.GPU(duration=90)
|
155 |
def extract_glb(
|
156 |
state: dict,
|
|
|
158 |
texture_size: int,
|
159 |
req: gr.Request,
|
160 |
) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
162 |
gs, mesh = unpack_state(state)
|
163 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
|
|
166 |
torch.cuda.empty_cache()
|
167 |
return glb_path, glb_path
|
168 |
|
|
|
169 |
@spaces.GPU
|
170 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
172 |
gs, _ = unpack_state(state)
|
173 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
|
175 |
torch.cuda.empty_cache()
|
176 |
return gaussian_path, gaussian_path
|
177 |
|
178 |
+
# Gradio Interface
|
179 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
gr.Markdown("""
|
181 |
+
## Game Asset Generation to 3D with FLUX and TRELLIS
|
182 |
+
* Enter a prompt to generate a game asset image, then convert it to 3D
|
183 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
|
|
|
|
184 |
""")
|
185 |
|
186 |
with gr.Row():
|
187 |
with gr.Column():
|
188 |
+
# Flux image generation inputs
|
189 |
+
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
|
190 |
+
with gr.Accordion("Generation Settings", open=False):
|
191 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
193 |
+
with gr.Row():
|
194 |
+
width = gr.Slider(256, 1024, label="Width", value=768, step=32)
|
195 |
+
height = gr.Slider(256, 1024, label="Height", value=768, step=32)
|
196 |
+
with gr.Row():
|
197 |
+
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
198 |
+
num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
|
199 |
+
lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
|
200 |
+
|
201 |
+
with gr.Accordion("3D Generation Settings", open=False):
|
202 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
203 |
with gr.Row():
|
204 |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
|
|
207 |
with gr.Row():
|
208 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
209 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
|
|
210 |
|
211 |
generate_btn = gr.Button("Generate")
|
212 |
|
213 |
+
with gr.Accordion("GLB Extraction Settings", open=False):
|
214 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
215 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
216 |
|
217 |
with gr.Row():
|
218 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
219 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
|
|
|
|
|
220 |
|
221 |
with gr.Column():
|
222 |
+
generated_image = gr.Image(label="Generated Asset", type="pil")
|
223 |
+
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
224 |
+
model_output = LitModel3D(label="Extracted GLB/Gaussian")
|
225 |
|
226 |
with gr.Row():
|
227 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
228 |
+
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
|
|
|
|
|
|
229 |
|
230 |
+
output_buf = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
# Event handlers
|
233 |
demo.load(start_session)
|
234 |
demo.unload(end_session)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
generate_btn.click(
|
237 |
+
generate_flux_image,
|
238 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
|
239 |
+
outputs=[generated_image],
|
240 |
).then(
|
241 |
image_to_3d,
|
242 |
+
inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
243 |
outputs=[output_buf, video_output],
|
244 |
).then(
|
245 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
246 |
outputs=[extract_glb_btn, extract_gs_btn],
|
247 |
)
|
248 |
|
|
|
|
|
|
|
|
|
|
|
249 |
extract_glb_btn.click(
|
250 |
extract_glb,
|
251 |
inputs=[output_buf, mesh_simplify, texture_size],
|
|
|
268 |
lambda: gr.Button(interactive=False),
|
269 |
outputs=[download_glb],
|
270 |
)
|
|
|
271 |
|
272 |
+
# Initialize both pipelines
|
273 |
if __name__ == "__main__":
|
274 |
+
# Initialize Flux pipeline
|
275 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
276 |
+
flux_pipeline = DiffusionPipeline.from_pretrained(
|
277 |
+
"black-forest-labs/FLUX.1-dev",
|
278 |
+
torch_dtype=torch.bfloat16
|
279 |
+
)
|
280 |
+
flux_pipeline.load_lora_weights("gokaygokay/Flux-Game-Assets-LoRA-v2")
|
281 |
+
flux_pipeline = flux_pipeline.to(device)
|
282 |
+
|
283 |
+
# Initialize Trellis pipeline
|
284 |
+
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
285 |
+
trellis_pipeline.cuda()
|
286 |
try:
|
287 |
+
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
288 |
except:
|
289 |
pass
|
290 |
+
|
291 |
+
demo.launch()
|