Spaces:
Sleeping
Sleeping
Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yt_dlp
|
2 |
+
from langchain import OpenAI, LLMChain
|
3 |
+
from langchain.chains.mapreduce import MapReduceChain
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
from langchain.chains.summarize import load_summarize_chain
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.docstore.document import Document
|
10 |
+
import whisper
|
11 |
+
import textwrap
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
|
19 |
+
async def download_mp4_from_youtube(url):
|
20 |
+
st.write("Downloading..........")
|
21 |
+
# Set the options for the download
|
22 |
+
filename = 'abc.mp4'
|
23 |
+
ydl_opts = {
|
24 |
+
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]',
|
25 |
+
'outtmpl': filename,
|
26 |
+
'quiet': True,
|
27 |
+
}
|
28 |
+
# Download the video file
|
29 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
30 |
+
result = ydl.extract_info(url, download=True)
|
31 |
+
print(transcribe())
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
def transcribe():
|
36 |
+
st.write("Transcribing.....")
|
37 |
+
model = whisper.load_model("base")
|
38 |
+
result = model.transcribe("abc.mp4")
|
39 |
+
with open ('text.txt', 'w') as file:
|
40 |
+
file.write(result['text'])
|
41 |
+
|
42 |
+
|
43 |
+
def create_llm():
|
44 |
+
st.write("Summarizing.....")
|
45 |
+
llm = ChatGroq()
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
47 |
+
chunk_size=1000, chunk_overlap=0, separators=[" ", ",", "\n"])
|
48 |
+
with open('text.txt') as f:
|
49 |
+
text = f.read()
|
50 |
+
texts = text_splitter.split_text(text)
|
51 |
+
docs = [Document(page_content=t) for t in texts[:4]]
|
52 |
+
prompt_template = """Write a concise bullet point summary of the following:
|
53 |
+
{text}
|
54 |
+
CONSCISE SUMMARY IN BULLET POINTS:"""
|
55 |
+
BULLET_POINT_PROMPT = PromptTemplate(template=prompt_template,
|
56 |
+
input_variables=["text"])
|
57 |
+
chain = load_summarize_chain(llm,
|
58 |
+
chain_type="stuff",
|
59 |
+
prompt=BULLET_POINT_PROMPT)
|
60 |
+
output_summary = chain.run(docs)
|
61 |
+
wrapped_text = textwrap.fill(output_summary,
|
62 |
+
width=1000,
|
63 |
+
break_long_words=False,
|
64 |
+
replace_whitespace=False)
|
65 |
+
# print(wrapped_text)
|
66 |
+
st.write("Summary of your video:")
|
67 |
+
st.write(wrapped_text)
|
68 |
+
return wrapped_text
|