gneya commited on
Commit
9752c7d
·
verified ·
1 Parent(s): 7ef6182

Delete utils.py

Browse files
Files changed (1) hide show
  1. utils.py +0 -93
utils.py DELETED
@@ -1,93 +0,0 @@
1
- from langchain.document_loaders import ApifyDatasetLoader
2
- from langchain.utilities import ApifyWrapper
3
- from langchain.docstore.document import Document
4
- from langchain.text_splitter import RecursiveCharacterTextSplitter
5
- from langchain.embeddings.cohere import CohereEmbeddings
6
- from langchain.vectorstores.deeplake import DeepLake
7
- from langchain_cohere import CohereRerank
8
- from langchain.retrievers import ContextualCompressionRetriever
9
- from langchain.memory import ConversationBufferWindowMemory
10
- import os
11
- from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
12
- from langchain_groq import ChatGroq
13
- from dotenv import load_dotenv
14
- load_dotenv()
15
-
16
- def get_and_load_data():
17
- apify_key = os.getenv("apify")
18
-
19
- apify = ApifyWrapper()
20
-
21
- loader = apify.call_actor(
22
- actor_id="apify/website-content-crawler",
23
- run_input={"startUrls": [{"url": "https://en.wikipedia.org/wiki/Artificial_intelligence"}]},
24
- dataset_mapping_function=lambda dataset_item: Document(
25
- page_content=dataset_item["text"] if dataset_item["text"] else "No content available",
26
- metadata={
27
- "source": dataset_item["url"],
28
- "title": dataset_item["metadata"]["title"]
29
- }
30
- ),
31
- )
32
- docs = loader.load()
33
- text_splitter = RecursiveCharacterTextSplitter(
34
- chunk_size=1000, chunk_overlap=20, length_function=len
35
- )
36
- docs_split = text_splitter.split_documents(docs)
37
- embeddings = CohereEmbeddings(model="embed-english-v2.0")
38
- username = "gneyapandya1234"
39
- db_id= "educational_chatbot"
40
-
41
- dbs = DeepLake(dataset_path=f"hub://{username}/{db_id}", embedding_function=embeddings)
42
- dbs.add_documents(docs_split)
43
-
44
- def deeplake():
45
- embeddings= CohereEmbeddings(model = "embed-english-v2.0")
46
- dbs = DeepLake(
47
- dataset_path="hub://gneyapandya1234/educational_chatbot",
48
- read_only=True,
49
- embedding_function= embeddings
50
- )
51
- retriever = dbs.as_retriever()
52
- retriever.search_kwargs["distance_metric"] = "cos"
53
- retriever.search_kwargs["fetch_k"] = 20
54
- # retriever.search_kwargs["maximal_marginal_relevance"] = True
55
- retriever.search_kwargs["k"] = 20
56
-
57
- compressor = CohereRerank(
58
- model = "rerank-english-v2.0",
59
- top_n=5
60
- )
61
- compressor_retriever = ContextualCompressionRetriever(
62
- base_compressor = compressor , base_retriever=retriever
63
- )
64
- print("DOne")
65
- return dbs, compressor_retriever, retriever
66
-
67
- def memory():
68
- mem = ConversationBufferWindowMemory(
69
- k=3,
70
- memory_key="chat_history",
71
- return_messages=True,
72
- output_key="answer"
73
- )
74
- return mem
75
- def create_llm():
76
- llm = ChatGroq(api_key= os.getenv("GROQ_API_KEY"),model="llama3-70b-8192")
77
- return llm
78
-
79
- def chain(llm,compression_retriever,memory):
80
- qa = ConversationalRetrievalChain.from_llm(
81
- llm = llm,
82
- memory= memory,
83
- retriever= compression_retriever,
84
- verbose= True,
85
- return_source_documents=True
86
- )
87
- return qa
88
- def final_function():
89
- llm = create_llm()
90
- mem =memory()
91
- dbs, compressor_retriever, retriever = deeplake()
92
- qa= chain(llm,compressor_retriever,mem)
93
- return qa, mem