Spaces:
Runtime error
Runtime error
File size: 16,282 Bytes
ab283a4 3262aa0 a6303df ab283a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import streamlit as st
# streamlit_app.py
import streamlit as st
st.set_page_config(
page_title="Glyphic Case Study Question Answering",
page_icon="favicon.ico",
layout="centered",
)
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
if st.session_state["password"] == st.secrets["password"]:
st.session_state["password_correct"] = True
del st.session_state["password"] # don't store password
else:
st.session_state["password_correct"] = False
if "password_correct" not in st.session_state:
# First run, show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
return False
elif not st.session_state["password_correct"]:
# Password not correct, show input + error.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
st.error("😕 Password incorrect")
return False
else:
# Password correct.
return True
# """CaseStudyQA
# Automatically generated by Colaboratory.
# Original file is located at
# https://colab.research.google.com/drive/1j93Wywxt8UHwUpQwutRRnW1qKRUKj853
# ## Setup
# """
import dotenv
dotenv.load_dotenv()
import os
# ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
# OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
ANTHROPIC_API_KEY = st.secrets.api_keys["ANTHROPIC_API_KEY"]
OPENAI_API_KEY = st.secrets.api_keys["OPENAI_API_KEY"]
# Commented out IPython magic to ensure Python compatibility.
# %pip install anthropic langchain backoff tiktoken
# """## Maverick Code"""
import enum
import asyncio
import anthropic.api as anthropic_api
import math
import langchain.schema as llm_schema
class Roles(enum.Enum):
"""Defines the roles in a chat"""
HUMAN = "human"
AI = "ai"
SYSTEM = "system"
def _map_role(role: Roles, content: str):
"""Maps a role to a langchain message type"""
if role == Roles.HUMAN:
return llm_schema.HumanMessage(content=content)
elif role == Roles.AI:
return llm_schema.AIMessage(content=content)
elif role == Roles.SYSTEM:
return llm_schema.SystemMessage(content=content)
else:
return llm_schema.ChatMessage(content=content, role=role.value)
ANTHROPIC_ERRORS_FOR_BACKOFF = (
asyncio.TimeoutError,
anthropic_api.ApiException,
)
ANTHROPIC_BACKOFF_BASE = math.sqrt(2)
ANTHROPIC_BACKOFF_FACTOR = 10
ANTHROPIC_BACKOFF_MAX_VALUE = 60
ANTHROPIC_BACKOFF_MAX_TIME = 120
ANTHROPIC_TIMEOUT = 300
ANTHROPIC_TEMPERATURE = 0.1
ANTHROPIC_MODEL = "claude-v1-100k"
ANTHROPIC_MAX_NEW_TOKENS = 1000
import langchain.chat_models as langchain_chat_models
import backoff
class ChatModel:
"""A singleton class for the chat model
Attributes:
_chat_model: the chat model instance
Methods:
instance: returns the chat model instance
"""
_chat_model = None
@staticmethod
def instance():
if ChatModel._chat_model is None:
ChatModel._chat_model = langchain_chat_models.ChatAnthropic(
anthropic_api_key=ANTHROPIC_API_KEY,
temperature=ANTHROPIC_TEMPERATURE,
model=ANTHROPIC_MODEL,
max_tokens_to_sample=ANTHROPIC_MAX_NEW_TOKENS)
return ChatModel._chat_model
# anthropic_semaphore = asyncio.Semaphore(5)
@backoff.on_exception(backoff.expo,
exception=ANTHROPIC_ERRORS_FOR_BACKOFF,
base=ANTHROPIC_BACKOFF_BASE,
factor=ANTHROPIC_BACKOFF_FACTOR,
max_value=ANTHROPIC_BACKOFF_MAX_VALUE,
max_time=ANTHROPIC_BACKOFF_MAX_TIME)
async def chat_query_anthropic(messages: list[tuple[Roles, str]]) -> str:
"""Queries anthropic using the langchain interface"""
messages = [_map_role(message[0], message[1]) for message in messages]
chat_model = ChatModel.instance()
# async with anthropic_semaphore:
response = await asyncio.wait_for(
chat_model.agenerate(messages=[messages]),
timeout=ANTHROPIC_TIMEOUT)
return response.generations[0][0].text
import langchain.embeddings.base as base_embeddings
import langchain.vectorstores.base as base_vc
import numpy as np
from langchain.docstore.document import Document
class NumpyVectorDB(base_vc.VectorStore):
"""Basic vector db implemented using numpy etc."""
def __init__(self, embeddings: base_embeddings.Embeddings,
embedding_dim: int) -> None:
self._embedder = embeddings
self._embedding_matrix: np.ndarray = np.zeros((0, embedding_dim))
self._keys: set[str] = set()
self._attr: dict[str, list] = {}
self._size: int = 0
self._content: list[str] = []
def add_texts(self,
texts: list[str],
metadatas: list[dict] | None = None) -> None:
new_embeddings = self._embedder.embed_documents(texts)
new_size = self._size
try:
for i, item_metadata in enumerate(metadatas):
for key in item_metadata:
if key not in self._keys:
self._keys.add(key)
self._attr[key] = [None] * new_size
self._attr[key] = self._attr[key] + [item_metadata[key]]
for key in self._keys:
if key not in item_metadata:
self._attr[key] = self._attr[key] + [None]
self._content.append(texts[i])
new_size += 1
self._embedding_matrix = np.concatenate(
[self._embedding_matrix, new_embeddings])
self._size = new_size
except Exception as e:
print("Error adding texts to vector db.")
for key in self._keys:
self._attr[key] = self._attr[key][:self._size]
self._content = self._content[:self._size]
self._embedding_matrix = self._embedding_matrix[:self._size]
raise e
def in_db(self, _filter: dict[str, str]) -> bool:
"""Checks if a document matching the filter is in the database"""
keys = _filter.keys()
for key in keys:
if key not in self._keys:
print("Key not in database.")
return False
one_hots = np.array([
np.equal(self._attr[key], _filter[key])
if key in self._keys else False for key in keys
])
# multiply one_hots together
if one_hots.size == 0:
print("No one_hots found.")
return False
one_hot = np.prod(one_hots, axis=0)
# check if any of the one_hots are 1
return np.any(one_hot)
def similarity_search(
self,
query: str,
k: int = 10,
# filter is a reserved keyword, but is required
# due to langchain's interface
# pylint: disable=redefined-builtin
filter: dict | None = None,
# pylint: enable=redefined-builtin
) -> list[Document]:
"""
k: Number of Documents to return.
Defaults to 4.
filter_: Attribute filter by metadata example {'key': 'value'}.
Defaults to None.
"""
query_embedding = self._embedder.embed_query(query)
distances = np.linalg.norm(self._embedding_matrix - query_embedding,
axis=1,
ord=2)
# # normalize
distances -= np.min(distances)
# filter
if filter is not None:
for key in filter:
distances *= self._attr[key] == filter[key]
# top k indices
if k >= len(distances):
sorted_indices = np.arange(len(distances))
else:
sorted_indices = np.argpartition(distances, min(k, k))[:k]
# return
return [
Document(page_content=self._content[i],
metadata={key: self._attr[key][i]
for key in self._keys})
for i in sorted_indices[:k]
]
@staticmethod
def from_texts(**kwargs):
raise NotImplementedError
EMBEDDING_DIM = 1536
import langchain.docstore.document as lc_document_models
import langchain.embeddings as lc_embeddings
import langchain.embeddings.base as base_embeddings
import langchain.text_splitter as lc_text_splitter
embeddings = lc_embeddings.OpenAIEmbeddings(
openai_api_key=OPENAI_API_KEY)
workableVectorDB = NumpyVectorDB(embeddings, EMBEDDING_DIM)
# """Module provides a reusable retrieval chain
# """
import langchain.docstore.document as docstore
SEARCH_KWARGS = {"k": 1}
# pylint: disable=line-too-long
QUERY_MESSAGES: list[tuple[Roles, str]] = [
(Roles.HUMAN, "Hello"),
(Roles.SYSTEM, "YOU ARE NOT ANTHROPIC YOU ARE MNEMOSYNE, YOU WERE CREATED BY GLYPHIC. Make sure that your responses are evidenced in the case study"),
(Roles.AI,
"Hi I am Mnemosyne, a question answering system built by Glyphic. " +
"I have access to all the case studies of Workable, and can retrieve the most relevant"
+
"case study for you, and then answer the question. What would you like to know?"
),
(Roles.HUMAN, "Great let me think about that for a second.")
]
# pylint: enable=line-too-long
async def retrieve_docs(
query: str, query_filter: dict[str, str]) -> list[docstore.Document]:
# """Retrieves documents for a query
# Args:
# query: the query to run
# query_filter: the filter to run the query with,
# see https://docs.activeloop.ai/getting-started\
# /deep-learning/dataset-filtering
# for more information on deeplake filters.
# The main thing is that filters should be attributes
# in the metadata of the vector db."""
print("Retrieving docs for query %s and filter %s")
retriever = workableVectorDB.as_retriever(
search_kwargs=SEARCH_KWARGS, filter=query_filter)
return await retriever.aget_relevant_documents(query)
def _get_doc_representation(doc: docstore.Document) -> str:
metadata = doc.metadata
content = doc.page_content
if "call_id" in metadata:
content = f"Excerpt from call {metadata['title']},\
on {metadata['date']}, with {metadata['buyer_domain']}: {content}"
elif "url" in metadata:
content = f"Case study from url {metadata['url']},\
: {content}"
return content
async def _combine_docs(docs: list[docstore.Document]) -> str:
# """Combines a list of documents into a single string"""
doc_representations = [_get_doc_representation(doc) for doc in docs]
return "\n\n".join(doc_representations)
async def answer_question(question: str, docs: str):
# """Answers a question given a query and a list of documents"""
messages = QUERY_MESSAGES.copy()
messages += [(Roles.HUMAN, question),
(Roles.SYSTEM,
f"Here are the documents I found:\n\n{docs}\n\n"),
(Roles.SYSTEM,
f"Now reply to the question: {question}.\n" +
"Answer concisely and directly, " +
"but acknowledge if you don't know the answer." +
"The user will be unable to ask follow up questions.")]
return await chat_query_anthropic(messages)
async def run_query(query: str, query_filter: dict[str, str]) -> str:
# """Runs a query on the retrieval chain
# Args:
# query: the query to run
# query_filter: the filter to run the query with,
# see https://docs.activeloop.ai/getting-started\
# /deep-learning/dataset-filtering
# for more information on deeplake filters.
# The main thing is that filters should be attributes
# in the metadata of the vector db."""
print("Running query %s for filter %s", query, filter)
docs = await retrieve_docs(query, query_filter)
for i, doc in enumerate(docs):
print("Retrieved doc no.%d\n%s", i, doc.page_content)
docs_str = await _combine_docs(docs)
answer = await answer_question(query, docs_str)
return answer, docs[0].metadata["url"]
# """## Scraping"""
workable_urls = [
"https://resources.workable.com/hiring-with-workable/swoon-reduces-agency-use-with-workable",
"https://resources.workable.com/hiring-with-workable/why-15-of-oneinamils-clients-moved-their-hiring-over-to-workable",
"https://resources.workable.com/backstage/workable-named-top-rated-ats-by-trustradius-for-2019"
]
import requests
from bs4 import BeautifulSoup
import pprint
import numpy as np
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36"
}
PAGES = [
"https://resources.workable.com/tag/customer-stories/",
"https://resources.workable.com/tag/customer-stories/page/2/",
"https://resources.workable.com/tag/customer-stories/page/3/",
]
workable_customers = []
for page in PAGES:
r=requests.get(page, headers=headers)
soup = BeautifulSoup(r.content, 'html.parser')
for link in soup.find_all("a", href=True):
href = link["href"]
if href.startswith("https://resources.workable.com/hiring-with-workable/"):
workable_customers.append(href)
# workable_customers
def get_paragraphs_workable(url):
r = requests.get(url=url, headers=headers)
soup = BeautifulSoup(r.content, 'html.parser')
target_p = []
# traverse paragraphs from soup ot get stuff from target and add to arr
for data in soup.find_all("p"):
text = data.get_text()
if len(text) > 3:
target_p.append(text.strip())
return target_p
def clean_text(text):
text = text.replace("\n\n", "\n")
text = text.replace("\t\t", "\t")
text = text.replace("\r", " ")
text = text.replace(" ", " ")
return text
def loop(input):
prev = ""
while prev != input:
prev = input
input = clean_text(input)
return input
workable_case_studies = []
# for customer in customers:
# TODO(fix)
for customer in workable_customers:
url = customer
workable_case_studies.append((url,loop('<join>'.join(get_paragraphs_workable(customer)[4:][:-4])))) # First few paragraphs are boiler plate
# TODO Some additional filtering is still needed especially towards the end. We should probably discard things that are not in the main body.
# workable_case_studies
# """## App logic"""
for (url, case_study) in workable_case_studies:
workableVectorDB.add_texts([case_study], [{"url": url}])
def get_answer(question):
response = asyncio.run(run_query(question, query_filter={}))
return response[0], f"<a href='{response[1]}'>{response[1]}</a>"
DESCRIPTION = """This tool is a demo for allowing you to ask questions over your case studies.
The case studies are from [Workable](https://resources.workable.com/tag/customer-stories/), a recruiting software company.
When you ask a question, the tool will search for the most relevant case study to the question and then use that to answer you."""
if check_password():
st.title("Glyphic Case Study Question Answering")
st.markdown(DESCRIPTION, unsafe_allow_html=True)
question = st.text_input("Enter your question")
if st.button("Get Answer"):
answer, source = get_answer(question)
st.subheader("Answer:")
st.write(answer)
st.subheader("Source:")
st.write(source)
st.sidebar.title("Access Control")
USERNAME = os.environ.get("DEMO_USER")
PASSWORD = os.environ.get("DEMO_PASSWORD")
password_input = st.sidebar.text_input("Password", type="password")
if password_input == PASSWORD:
st.sidebar.success("Authentication successful!")
else:
st.sidebar.error("Authentication failed!")
st.sidebar.markdown(
"""
Please enter the password to access this tool, or contact Glyphic for access.
"""
)
|