Spaces:
Runtime error
Runtime error
DylanASHillier
commited on
Commit
•
ab283a4
1
Parent(s):
63d295a
adds streamlit
Browse files- streamlit.py +470 -0
streamlit.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
# streamlit_app.py
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="Glyphic Case Study Question Answering",
|
9 |
+
page_icon="favicon.ico",
|
10 |
+
layout="centered",
|
11 |
+
)
|
12 |
+
|
13 |
+
def check_password():
|
14 |
+
"""Returns `True` if the user had the correct password."""
|
15 |
+
|
16 |
+
def password_entered():
|
17 |
+
"""Checks whether a password entered by the user is correct."""
|
18 |
+
if st.session_state["password"] == st.secrets["password"]:
|
19 |
+
st.session_state["password_correct"] = True
|
20 |
+
del st.session_state["password"] # don't store password
|
21 |
+
else:
|
22 |
+
st.session_state["password_correct"] = False
|
23 |
+
|
24 |
+
if "password_correct" not in st.session_state:
|
25 |
+
# First run, show input for password.
|
26 |
+
st.text_input(
|
27 |
+
"Password", type="password", on_change=password_entered, key="password"
|
28 |
+
)
|
29 |
+
return False
|
30 |
+
elif not st.session_state["password_correct"]:
|
31 |
+
# Password not correct, show input + error.
|
32 |
+
st.text_input(
|
33 |
+
"Password", type="password", on_change=password_entered, key="password"
|
34 |
+
)
|
35 |
+
st.error("😕 Password incorrect")
|
36 |
+
return False
|
37 |
+
else:
|
38 |
+
# Password correct.
|
39 |
+
return True
|
40 |
+
# """CaseStudyQA
|
41 |
+
|
42 |
+
# Automatically generated by Colaboratory.
|
43 |
+
|
44 |
+
# Original file is located at
|
45 |
+
# https://colab.research.google.com/drive/1j93Wywxt8UHwUpQwutRRnW1qKRUKj853
|
46 |
+
|
47 |
+
# ## Setup
|
48 |
+
# """
|
49 |
+
import dotenv
|
50 |
+
dotenv.load_dotenv()
|
51 |
+
import os
|
52 |
+
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
|
53 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
54 |
+
|
55 |
+
# Commented out IPython magic to ensure Python compatibility.
|
56 |
+
# %pip install anthropic langchain backoff tiktoken
|
57 |
+
|
58 |
+
# """## Maverick Code"""
|
59 |
+
|
60 |
+
import enum
|
61 |
+
import asyncio
|
62 |
+
import anthropic.api as anthropic_api
|
63 |
+
import math
|
64 |
+
import langchain.schema as llm_schema
|
65 |
+
|
66 |
+
class Roles(enum.Enum):
|
67 |
+
"""Defines the roles in a chat"""
|
68 |
+
HUMAN = "human"
|
69 |
+
AI = "ai"
|
70 |
+
SYSTEM = "system"
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def _map_role(role: Roles, content: str):
|
76 |
+
"""Maps a role to a langchain message type"""
|
77 |
+
if role == Roles.HUMAN:
|
78 |
+
return llm_schema.HumanMessage(content=content)
|
79 |
+
elif role == Roles.AI:
|
80 |
+
return llm_schema.AIMessage(content=content)
|
81 |
+
elif role == Roles.SYSTEM:
|
82 |
+
return llm_schema.SystemMessage(content=content)
|
83 |
+
else:
|
84 |
+
return llm_schema.ChatMessage(content=content, role=role.value)
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
ANTHROPIC_ERRORS_FOR_BACKOFF = (
|
89 |
+
asyncio.TimeoutError,
|
90 |
+
anthropic_api.ApiException,
|
91 |
+
)
|
92 |
+
ANTHROPIC_BACKOFF_BASE = math.sqrt(2)
|
93 |
+
ANTHROPIC_BACKOFF_FACTOR = 10
|
94 |
+
ANTHROPIC_BACKOFF_MAX_VALUE = 60
|
95 |
+
ANTHROPIC_BACKOFF_MAX_TIME = 120
|
96 |
+
ANTHROPIC_TIMEOUT = 300
|
97 |
+
ANTHROPIC_TEMPERATURE = 0.1
|
98 |
+
ANTHROPIC_MODEL = "claude-v1-100k"
|
99 |
+
ANTHROPIC_MAX_NEW_TOKENS = 1000
|
100 |
+
|
101 |
+
import langchain.chat_models as langchain_chat_models
|
102 |
+
import backoff
|
103 |
+
|
104 |
+
class ChatModel:
|
105 |
+
"""A singleton class for the chat model
|
106 |
+
|
107 |
+
Attributes:
|
108 |
+
_chat_model: the chat model instance
|
109 |
+
|
110 |
+
Methods:
|
111 |
+
instance: returns the chat model instance
|
112 |
+
"""
|
113 |
+
_chat_model = None
|
114 |
+
|
115 |
+
@staticmethod
|
116 |
+
def instance():
|
117 |
+
if ChatModel._chat_model is None:
|
118 |
+
ChatModel._chat_model = langchain_chat_models.ChatAnthropic(
|
119 |
+
anthropic_api_key=ANTHROPIC_API_KEY,
|
120 |
+
temperature=ANTHROPIC_TEMPERATURE,
|
121 |
+
model=ANTHROPIC_MODEL,
|
122 |
+
max_tokens_to_sample=ANTHROPIC_MAX_NEW_TOKENS)
|
123 |
+
return ChatModel._chat_model
|
124 |
+
|
125 |
+
# anthropic_semaphore = asyncio.Semaphore(5)
|
126 |
+
|
127 |
+
@backoff.on_exception(backoff.expo,
|
128 |
+
exception=ANTHROPIC_ERRORS_FOR_BACKOFF,
|
129 |
+
base=ANTHROPIC_BACKOFF_BASE,
|
130 |
+
factor=ANTHROPIC_BACKOFF_FACTOR,
|
131 |
+
max_value=ANTHROPIC_BACKOFF_MAX_VALUE,
|
132 |
+
max_time=ANTHROPIC_BACKOFF_MAX_TIME)
|
133 |
+
async def chat_query_anthropic(messages: list[tuple[Roles, str]]) -> str:
|
134 |
+
"""Queries anthropic using the langchain interface"""
|
135 |
+
messages = [_map_role(message[0], message[1]) for message in messages]
|
136 |
+
chat_model = ChatModel.instance()
|
137 |
+
# async with anthropic_semaphore:
|
138 |
+
response = await asyncio.wait_for(
|
139 |
+
chat_model.agenerate(messages=[messages]),
|
140 |
+
timeout=ANTHROPIC_TIMEOUT)
|
141 |
+
return response.generations[0][0].text
|
142 |
+
|
143 |
+
import langchain.embeddings.base as base_embeddings
|
144 |
+
import langchain.vectorstores.base as base_vc
|
145 |
+
import numpy as np
|
146 |
+
from langchain.docstore.document import Document
|
147 |
+
|
148 |
+
|
149 |
+
class NumpyVectorDB(base_vc.VectorStore):
|
150 |
+
"""Basic vector db implemented using numpy etc."""
|
151 |
+
|
152 |
+
def __init__(self, embeddings: base_embeddings.Embeddings,
|
153 |
+
embedding_dim: int) -> None:
|
154 |
+
self._embedder = embeddings
|
155 |
+
self._embedding_matrix: np.ndarray = np.zeros((0, embedding_dim))
|
156 |
+
self._keys: set[str] = set()
|
157 |
+
self._attr: dict[str, list] = {}
|
158 |
+
self._size: int = 0
|
159 |
+
self._content: list[str] = []
|
160 |
+
|
161 |
+
def add_texts(self,
|
162 |
+
texts: list[str],
|
163 |
+
metadatas: list[dict] | None = None) -> None:
|
164 |
+
new_embeddings = self._embedder.embed_documents(texts)
|
165 |
+
new_size = self._size
|
166 |
+
try:
|
167 |
+
for i, item_metadata in enumerate(metadatas):
|
168 |
+
for key in item_metadata:
|
169 |
+
if key not in self._keys:
|
170 |
+
self._keys.add(key)
|
171 |
+
self._attr[key] = [None] * new_size
|
172 |
+
self._attr[key] = self._attr[key] + [item_metadata[key]]
|
173 |
+
for key in self._keys:
|
174 |
+
if key not in item_metadata:
|
175 |
+
self._attr[key] = self._attr[key] + [None]
|
176 |
+
self._content.append(texts[i])
|
177 |
+
new_size += 1
|
178 |
+
self._embedding_matrix = np.concatenate(
|
179 |
+
[self._embedding_matrix, new_embeddings])
|
180 |
+
self._size = new_size
|
181 |
+
except Exception as e:
|
182 |
+
print("Error adding texts to vector db.")
|
183 |
+
for key in self._keys:
|
184 |
+
self._attr[key] = self._attr[key][:self._size]
|
185 |
+
self._content = self._content[:self._size]
|
186 |
+
self._embedding_matrix = self._embedding_matrix[:self._size]
|
187 |
+
raise e
|
188 |
+
|
189 |
+
def in_db(self, _filter: dict[str, str]) -> bool:
|
190 |
+
"""Checks if a document matching the filter is in the database"""
|
191 |
+
keys = _filter.keys()
|
192 |
+
for key in keys:
|
193 |
+
if key not in self._keys:
|
194 |
+
print("Key not in database.")
|
195 |
+
return False
|
196 |
+
one_hots = np.array([
|
197 |
+
np.equal(self._attr[key], _filter[key])
|
198 |
+
if key in self._keys else False for key in keys
|
199 |
+
])
|
200 |
+
# multiply one_hots together
|
201 |
+
if one_hots.size == 0:
|
202 |
+
print("No one_hots found.")
|
203 |
+
return False
|
204 |
+
one_hot = np.prod(one_hots, axis=0)
|
205 |
+
# check if any of the one_hots are 1
|
206 |
+
return np.any(one_hot)
|
207 |
+
|
208 |
+
def similarity_search(
|
209 |
+
self,
|
210 |
+
query: str,
|
211 |
+
k: int = 10,
|
212 |
+
# filter is a reserved keyword, but is required
|
213 |
+
# due to langchain's interface
|
214 |
+
# pylint: disable=redefined-builtin
|
215 |
+
filter: dict | None = None,
|
216 |
+
# pylint: enable=redefined-builtin
|
217 |
+
) -> list[Document]:
|
218 |
+
"""
|
219 |
+
k: Number of Documents to return.
|
220 |
+
Defaults to 4.
|
221 |
+
filter_: Attribute filter by metadata example {'key': 'value'}.
|
222 |
+
Defaults to None.
|
223 |
+
"""
|
224 |
+
query_embedding = self._embedder.embed_query(query)
|
225 |
+
distances = np.linalg.norm(self._embedding_matrix - query_embedding,
|
226 |
+
axis=1,
|
227 |
+
ord=2)
|
228 |
+
# # normalize
|
229 |
+
distances -= np.min(distances)
|
230 |
+
# filter
|
231 |
+
if filter is not None:
|
232 |
+
for key in filter:
|
233 |
+
distances *= self._attr[key] == filter[key]
|
234 |
+
# top k indices
|
235 |
+
if k >= len(distances):
|
236 |
+
sorted_indices = np.arange(len(distances))
|
237 |
+
else:
|
238 |
+
sorted_indices = np.argpartition(distances, min(k, k))[:k]
|
239 |
+
# return
|
240 |
+
return [
|
241 |
+
Document(page_content=self._content[i],
|
242 |
+
metadata={key: self._attr[key][i]
|
243 |
+
for key in self._keys})
|
244 |
+
for i in sorted_indices[:k]
|
245 |
+
]
|
246 |
+
|
247 |
+
@staticmethod
|
248 |
+
def from_texts(**kwargs):
|
249 |
+
raise NotImplementedError
|
250 |
+
|
251 |
+
EMBEDDING_DIM = 1536
|
252 |
+
|
253 |
+
import langchain.docstore.document as lc_document_models
|
254 |
+
import langchain.embeddings as lc_embeddings
|
255 |
+
import langchain.embeddings.base as base_embeddings
|
256 |
+
import langchain.text_splitter as lc_text_splitter
|
257 |
+
|
258 |
+
embeddings = lc_embeddings.OpenAIEmbeddings(
|
259 |
+
openai_api_key=OPENAI_API_KEY)
|
260 |
+
|
261 |
+
workableVectorDB = NumpyVectorDB(embeddings, EMBEDDING_DIM)
|
262 |
+
|
263 |
+
# """Module provides a reusable retrieval chain
|
264 |
+
# """
|
265 |
+
|
266 |
+
import langchain.docstore.document as docstore
|
267 |
+
|
268 |
+
SEARCH_KWARGS = {"k": 1}
|
269 |
+
|
270 |
+
# pylint: disable=line-too-long
|
271 |
+
|
272 |
+
QUERY_MESSAGES: list[tuple[Roles, str]] = [
|
273 |
+
(Roles.HUMAN, "Hello"),
|
274 |
+
(Roles.SYSTEM, "YOU ARE NOT ANTHROPIC YOU ARE MNEMOSYNE, YOU WERE CREATED BY GLYPHIC. Make sure that your responses are evidenced in the case study"),
|
275 |
+
(Roles.AI,
|
276 |
+
"Hi I am Mnemosyne, a question answering system built by Glyphic. " +
|
277 |
+
"I have access to all the case studies of Workable, and can retrieve the most relevant"
|
278 |
+
+
|
279 |
+
"case study for you, and then answer the question. What would you like to know?"
|
280 |
+
),
|
281 |
+
(Roles.HUMAN, "Great let me think about that for a second.")
|
282 |
+
]
|
283 |
+
|
284 |
+
|
285 |
+
# pylint: enable=line-too-long
|
286 |
+
async def retrieve_docs(
|
287 |
+
query: str, query_filter: dict[str, str]) -> list[docstore.Document]:
|
288 |
+
# """Retrieves documents for a query
|
289 |
+
|
290 |
+
# Args:
|
291 |
+
# query: the query to run
|
292 |
+
# query_filter: the filter to run the query with,
|
293 |
+
# see https://docs.activeloop.ai/getting-started\
|
294 |
+
# /deep-learning/dataset-filtering
|
295 |
+
# for more information on deeplake filters.
|
296 |
+
# The main thing is that filters should be attributes
|
297 |
+
# in the metadata of the vector db."""
|
298 |
+
print("Retrieving docs for query %s and filter %s")
|
299 |
+
retriever = workableVectorDB.as_retriever(
|
300 |
+
search_kwargs=SEARCH_KWARGS, filter=query_filter)
|
301 |
+
return await retriever.aget_relevant_documents(query)
|
302 |
+
|
303 |
+
|
304 |
+
def _get_doc_representation(doc: docstore.Document) -> str:
|
305 |
+
metadata = doc.metadata
|
306 |
+
content = doc.page_content
|
307 |
+
if "call_id" in metadata:
|
308 |
+
content = f"Excerpt from call {metadata['title']},\
|
309 |
+
on {metadata['date']}, with {metadata['buyer_domain']}: {content}"
|
310 |
+
elif "url" in metadata:
|
311 |
+
content = f"Case study from url {metadata['url']},\
|
312 |
+
: {content}"
|
313 |
+
|
314 |
+
return content
|
315 |
+
|
316 |
+
|
317 |
+
async def _combine_docs(docs: list[docstore.Document]) -> str:
|
318 |
+
# """Combines a list of documents into a single string"""
|
319 |
+
doc_representations = [_get_doc_representation(doc) for doc in docs]
|
320 |
+
return "\n\n".join(doc_representations)
|
321 |
+
|
322 |
+
|
323 |
+
async def answer_question(question: str, docs: str):
|
324 |
+
# """Answers a question given a query and a list of documents"""
|
325 |
+
messages = QUERY_MESSAGES.copy()
|
326 |
+
messages += [(Roles.HUMAN, question),
|
327 |
+
(Roles.SYSTEM,
|
328 |
+
f"Here are the documents I found:\n\n{docs}\n\n"),
|
329 |
+
(Roles.SYSTEM,
|
330 |
+
f"Now reply to the question: {question}.\n" +
|
331 |
+
"Answer concisely and directly, " +
|
332 |
+
"but acknowledge if you don't know the answer." +
|
333 |
+
"The user will be unable to ask follow up questions.")]
|
334 |
+
return await chat_query_anthropic(messages)
|
335 |
+
|
336 |
+
|
337 |
+
async def run_query(query: str, query_filter: dict[str, str]) -> str:
|
338 |
+
# """Runs a query on the retrieval chain
|
339 |
+
|
340 |
+
# Args:
|
341 |
+
# query: the query to run
|
342 |
+
# query_filter: the filter to run the query with,
|
343 |
+
# see https://docs.activeloop.ai/getting-started\
|
344 |
+
# /deep-learning/dataset-filtering
|
345 |
+
# for more information on deeplake filters.
|
346 |
+
# The main thing is that filters should be attributes
|
347 |
+
# in the metadata of the vector db."""
|
348 |
+
print("Running query %s for filter %s", query, filter)
|
349 |
+
docs = await retrieve_docs(query, query_filter)
|
350 |
+
for i, doc in enumerate(docs):
|
351 |
+
print("Retrieved doc no.%d\n%s", i, doc.page_content)
|
352 |
+
docs_str = await _combine_docs(docs)
|
353 |
+
answer = await answer_question(query, docs_str)
|
354 |
+
return answer, docs[0].metadata["url"]
|
355 |
+
|
356 |
+
# """## Scraping"""
|
357 |
+
|
358 |
+
|
359 |
+
workable_urls = [
|
360 |
+
"https://resources.workable.com/hiring-with-workable/swoon-reduces-agency-use-with-workable",
|
361 |
+
"https://resources.workable.com/hiring-with-workable/why-15-of-oneinamils-clients-moved-their-hiring-over-to-workable",
|
362 |
+
"https://resources.workable.com/backstage/workable-named-top-rated-ats-by-trustradius-for-2019"
|
363 |
+
]
|
364 |
+
|
365 |
+
import requests
|
366 |
+
from bs4 import BeautifulSoup
|
367 |
+
import pprint
|
368 |
+
import numpy as np
|
369 |
+
|
370 |
+
headers = {
|
371 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36"
|
372 |
+
}
|
373 |
+
|
374 |
+
PAGES = [
|
375 |
+
"https://resources.workable.com/tag/customer-stories/",
|
376 |
+
"https://resources.workable.com/tag/customer-stories/page/2/",
|
377 |
+
"https://resources.workable.com/tag/customer-stories/page/3/",
|
378 |
+
]
|
379 |
+
workable_customers = []
|
380 |
+
for page in PAGES:
|
381 |
+
r=requests.get(page, headers=headers)
|
382 |
+
soup = BeautifulSoup(r.content, 'html.parser')
|
383 |
+
for link in soup.find_all("a", href=True):
|
384 |
+
href = link["href"]
|
385 |
+
if href.startswith("https://resources.workable.com/hiring-with-workable/"):
|
386 |
+
workable_customers.append(href)
|
387 |
+
|
388 |
+
# workable_customers
|
389 |
+
|
390 |
+
def get_paragraphs_workable(url):
|
391 |
+
r = requests.get(url=url, headers=headers)
|
392 |
+
|
393 |
+
soup = BeautifulSoup(r.content, 'html.parser')
|
394 |
+
|
395 |
+
target_p = []
|
396 |
+
|
397 |
+
# traverse paragraphs from soup ot get stuff from target and add to arr
|
398 |
+
for data in soup.find_all("p"):
|
399 |
+
text = data.get_text()
|
400 |
+
if len(text) > 3:
|
401 |
+
target_p.append(text.strip())
|
402 |
+
return target_p
|
403 |
+
|
404 |
+
def clean_text(text):
|
405 |
+
text = text.replace("\n\n", "\n")
|
406 |
+
text = text.replace("\t\t", "\t")
|
407 |
+
text = text.replace("\r", " ")
|
408 |
+
text = text.replace(" ", " ")
|
409 |
+
return text
|
410 |
+
|
411 |
+
def loop(input):
|
412 |
+
prev = ""
|
413 |
+
while prev != input:
|
414 |
+
prev = input
|
415 |
+
input = clean_text(input)
|
416 |
+
return input
|
417 |
+
|
418 |
+
workable_case_studies = []
|
419 |
+
# for customer in customers:
|
420 |
+
# TODO(fix)
|
421 |
+
for customer in workable_customers:
|
422 |
+
url = customer
|
423 |
+
workable_case_studies.append((url,loop('<join>'.join(get_paragraphs_workable(customer)[4:][:-4])))) # First few paragraphs are boiler plate
|
424 |
+
# TODO Some additional filtering is still needed especially towards the end. We should probably discard things that are not in the main body.
|
425 |
+
# workable_case_studies
|
426 |
+
|
427 |
+
|
428 |
+
# """## App logic"""
|
429 |
+
for (url, case_study) in workable_case_studies:
|
430 |
+
workableVectorDB.add_texts([case_study], [{"url": url}])
|
431 |
+
|
432 |
+
|
433 |
+
def get_answer(question):
|
434 |
+
response = asyncio.run(run_query(question, query_filter={}))
|
435 |
+
return response[0], f"<a href='{response[1]}'>{response[1]}</a>"
|
436 |
+
|
437 |
+
DESCRIPTION = """This tool is a demo for allowing you to ask questions over your case studies.
|
438 |
+
|
439 |
+
The case studies are from [Workable](https://resources.workable.com/tag/customer-stories/), a recruiting software company.
|
440 |
+
When you ask a question, the tool will search for the most relevant case study to the question and then use that to answer you."""
|
441 |
+
|
442 |
+
|
443 |
+
if check_password():
|
444 |
+
st.title("Glyphic Case Study Question Answering")
|
445 |
+
st.markdown(DESCRIPTION, unsafe_allow_html=True)
|
446 |
+
|
447 |
+
question = st.text_input("Enter your question")
|
448 |
+
|
449 |
+
if st.button("Get Answer"):
|
450 |
+
answer, source = get_answer(question)
|
451 |
+
st.subheader("Answer:")
|
452 |
+
st.write(answer)
|
453 |
+
st.subheader("Source:")
|
454 |
+
st.write(source)
|
455 |
+
|
456 |
+
st.sidebar.title("Access Control")
|
457 |
+
USERNAME = os.environ.get("DEMO_USER")
|
458 |
+
PASSWORD = os.environ.get("DEMO_PASSWORD")
|
459 |
+
password_input = st.sidebar.text_input("Password", type="password")
|
460 |
+
|
461 |
+
if password_input == PASSWORD:
|
462 |
+
st.sidebar.success("Authentication successful!")
|
463 |
+
else:
|
464 |
+
st.sidebar.error("Authentication failed!")
|
465 |
+
|
466 |
+
st.sidebar.markdown(
|
467 |
+
"""
|
468 |
+
Please enter the password to access this tool, or contact Glyphic for access.
|
469 |
+
"""
|
470 |
+
)
|