File size: 10,433 Bytes
d6b3b9f
01942d8
88f768f
71788ef
34009a0
60a5363
 
d6b3b9f
01c4e21
583defc
 
 
77961b6
 
d6b3b9f
71788ef
 
 
 
 
d6b3b9f
 
 
 
88f768f
 
 
 
 
 
 
 
 
 
 
 
 
 
01942d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c4e21
88f768f
 
 
 
01c4e21
 
 
 
 
 
 
88f768f
 
01c4e21
 
 
 
 
 
 
88f768f
01942d8
 
 
27538a2
01942d8
 
88f768f
27538a2
1bf401f
88f768f
27538a2
1bf401f
27538a2
 
 
 
01c4e21
 
 
 
 
 
 
27538a2
 
85095eb
583defc
 
01c4e21
 
 
 
 
85095eb
 
01942d8
01c4e21
 
d57b1dd
 
85095eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea670d5
 
01c4e21
 
 
 
 
 
 
ea670d5
 
0942332
 
 
 
 
 
 
 
 
d57b1dd
60a5363
 
 
 
 
 
 
 
 
 
 
 
0942332
 
60a5363
d57b1dd
34009a0
 
60a5363
34009a0
60a5363
 
 
 
 
 
583defc
60a5363
d57b1dd
01942d8
d6b3b9f
 
 
 
 
7cdd792
d6b3b9f
 
88f768f
d6b3b9f
 
 
 
 
 
 
 
7cdd792
 
 
 
 
 
d6b3b9f
 
 
 
7cdd792
d6b3b9f
 
01942d8
d6b3b9f
01942d8
 
 
 
 
d6b3b9f
 
01942d8
d6b3b9f
01942d8
 
 
 
 
d6b3b9f
 
7cdd792
 
 
 
 
 
 
 
 
 
 
 
01c4e21
01942d8
ea670d5
 
 
 
 
 
 
 
01942d8
88f768f
01942d8
 
d57b1dd
01c4e21
01942d8
 
 
ea670d5
 
583defc
 
01c4e21
ea670d5
 
 
 
 
 
 
 
 
0942332
ea670d5
01942d8
 
 
d6b3b9f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import gradio as gr
import datasets
import huggingface_hub
import os
import time
import subprocess
import logging

import json

from transformers.pipelines import TextClassificationPipeline

from text_classification import text_classification_fix_column_mapping


HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'


theme = gr.themes.Soft(
    primary_hue="green",
)

def check_model(model_id):
    try:
        task = huggingface_hub.model_info(model_id).pipeline_tag
    except Exception:
        return None, None

    try:
        from transformers import pipeline
        ppl = pipeline(task=task, model=model_id)
        
        return model_id, ppl
    except Exception as e:
        return model_id, e


def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
    try:
        configs = datasets.get_dataset_config_names(dataset_id)
    except Exception:
        # Dataset may not exist
        return None, dataset_config, dataset_split

    if dataset_config not in configs:
        # Need to choose dataset subset (config)
        return dataset_id, configs, dataset_split

    ds = datasets.load_dataset(dataset_id, dataset_config)

    if isinstance(ds, datasets.DatasetDict):
        # Need to choose dataset split
        if dataset_split not in ds.keys():
            return dataset_id, None, list(ds.keys())
    elif not isinstance(ds, datasets.Dataset):
        # Unknown type
        return dataset_id, None, None
    return dataset_id, dataset_config, dataset_split


def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
    # Validate model
    m_id, ppl = check_model(model_id=model_id)
    if m_id is None:
        gr.Warning(f'Model "{model_id}" is not accessible. Please set your HF_TOKEN if it is a private model.')
        return (
            dataset_config, dataset_split,
            gr.update(interactive=False),   # Submit button
            gr.update(visible=False),       # Model prediction preview
            gr.update(visible=False),       # Label mapping preview
            gr.update(visible=True),        # Column mapping
        )
    if isinstance(ppl, Exception):
        gr.Warning(f'Failed to load "{model_id} model": {ppl}')
        return (
            dataset_config, dataset_split,
            gr.update(interactive=False),   # Submit button
            gr.update(visible=False),       # Model prediction preview
            gr.update(visible=False),       # Label mapping preview
            gr.update(visible=True),        # Column mapping
        )

    # Validate dataset
    d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)

    dataset_ok = False
    if d_id is None:
        gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
    elif isinstance(config, list):
        gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.')
        config = gr.update(choices=config, value=config[0])
    elif isinstance(split, list):
        gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.')
        split = gr.update(choices=split, value=split[0])
    else:
        dataset_ok = True

    if not dataset_ok:
        return (
            config, split,
            gr.update(interactive=False),   # Submit button
            gr.update(visible=False),       # Model prediction preview
            gr.update(visible=False),       # Label mapping preview
            gr.update(visible=True),        # Column mapping
        )

    # TODO: Validate column mapping by running once
    prediction_result = None
    id2label_df = None
    if isinstance(ppl, TextClassificationPipeline):
        try:
            column_mapping = json.loads(column_mapping)
        except Exception:
            column_mapping = {}

        column_mapping, prediction_result, id2label_df = \
            text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)

        column_mapping = json.dumps(column_mapping, indent=2)

    del ppl

    if prediction_result is None:
        gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
        return (
            config, split,
            gr.update(interactive=False),   # Submit button
            gr.update(visible=False),   # Model prediction preview
            gr.update(visible=False),   # Label mapping preview
            gr.update(value=column_mapping, visible=True, interactive=True),    # Column mapping
        )
    elif id2label_df is None:
        gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
        return (
            config, split,
            gr.update(interactive=False),   # Submit button
            gr.update(value=prediction_result, visible=True),   # Model prediction preview
            gr.update(visible=False),   # Label mapping preview
            gr.update(value=column_mapping, visible=True, interactive=True),    # Column mapping
        )

    gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")

    return (
        config, split,
        gr.update(interactive=True),    # Submit button
        gr.update(value=prediction_result, visible=True),   # Model prediction preview
        gr.update(value=id2label_df, visible=True), # Label mapping preview
        gr.update(value=column_mapping, visible=True, interactive=True),    # Column mapping
    )


def try_submit(m_id, d_id, config, split, column_mappings, local):
    label_mapping = {}
    try:
        column_mapping = json.loads(column_mappings)
        if "label" in column_mapping:
            label_mapping = column_mapping.pop("label", {})
    except Exception:
        column_mapping = {}

    if local:
        command = [
            "python",
            "cli.py",
            "--loader", "huggingface",
            "--model", m_id,
            "--dataset", d_id,
            "--dataset_config", config,
            "--dataset_split", split,
            "--hf_token", os.environ.get(HF_WRITE_TOKEN),
            "--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
            "--output_format", "markdown",
            "--output_portal", "huggingface",
            "--feature_mapping", json.dumps(column_mapping),
            "--label_mapping", json.dumps(label_mapping),
        ]

        eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
        start = time.time()
        logging.info(f"Start local evaluation on {eval_str}")

        evaluator = subprocess.Popen(
            command,
            cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
            stderr=subprocess.STDOUT,
        )
        result = evaluator.wait()

        logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")


with gr.Blocks(theme=theme) as iface:
    with gr.Row():
        with gr.Column():
            model_id_input = gr.Textbox(
                label="Hugging Face model id",
                placeholder="e.g.: cardiffnlp/twitter-roberta-base-sentiment-latest",
            )

            # TODO: Add supported model pairs: Text Classification - text-classification
            model_type = gr.Dropdown(
                label="Hugging Face model type",
                choices=[
                    ("Auto-detect", 0),
                    ("Text Classification", 1),
                ],
                value=0,
            )
            example_labels = gr.Label(label='Model prediction result', visible=False)

            id2label_mapping_dataframe = gr.DataFrame(
                label="Model-dataset label mapping",
                visible=False,
            )

        with gr.Column():
            dataset_id_input = gr.Textbox(
                label="Hugging Face dataset id",
                placeholder="e.g.: tweet_eval",
            )

            dataset_config_input = gr.Dropdown(
                label="Hugging Face dataset subset",
                choices=[
                    "default",
                ],
                allow_custom_value=True,
                value="default",
            )

            dataset_split_input = gr.Dropdown(
                label="Hugging Face dataset split",
                choices=[
                    "test",
                ],
                allow_custom_value=True,
                value="test",
            )

            with gr.Accordion("Advance", open=False):
                run_local = gr.Checkbox(value=True, label="Run in this Space")
                column_mapping_input = gr.Textbox(
                    value="",
                    lines=6,
                    label="Column mapping",
                    placeholder="Description of mapping of columns in model to dataset, in json format, e.g.:\n"
                                '{\n'
                                '   "text": "context",\n'
                                '   "label": {0: "Positive", 1: "Negative"}\n'
                                '}',
                )

    with gr.Row():
        validate_btn = gr.Button("Validate model and dataset", variant="primary")
        run_btn = gr.Button(
            "Submit evaluation task",
            variant="primary",
            interactive=False,
        )
        validate_btn.click(
            try_validate,
            inputs=[
                model_id_input,
                dataset_id_input,
                dataset_config_input,
                dataset_split_input,
                column_mapping_input,
            ],
            outputs=[
                dataset_config_input,
                dataset_split_input,
                run_btn,
                example_labels,
                id2label_mapping_dataframe,
                column_mapping_input,
            ],
        )
        run_btn.click(
            try_submit,
            inputs=[
                model_id_input,
                dataset_id_input,
                dataset_config_input,
                dataset_split_input,
                column_mapping_input,
                run_local,
            ],
        )

iface.queue(max_size=20)
iface.launch()