Spaces:
Sleeping
Sleeping
inoki-giskard
commited on
Commit
·
85095eb
1
Parent(s):
01c4e21
Add features, label mapping in text classification
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import time
|
|
7 |
from pathlib import Path
|
8 |
|
9 |
import json
|
|
|
10 |
|
11 |
import pandas as pd
|
12 |
|
@@ -64,16 +65,20 @@ def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
|
64 |
for model_label in id2label_mapping.keys():
|
65 |
if model_label.upper() == label.upper():
|
66 |
return model_label, label
|
|
|
67 |
|
68 |
|
69 |
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
70 |
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
|
|
71 |
for feature in dataset_features.values():
|
72 |
if not isinstance(feature, datasets.ClassLabel):
|
73 |
continue
|
74 |
if len(feature.names) != len(id2label_mapping.keys()):
|
75 |
continue
|
76 |
|
|
|
|
|
77 |
# Try to match labels
|
78 |
for label in feature.names:
|
79 |
if label in id2label_mapping.keys():
|
@@ -81,9 +86,86 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
81 |
else:
|
82 |
# Try to find case unsensative
|
83 |
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
|
@@ -133,7 +215,7 @@ def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_map
|
|
133 |
)
|
134 |
|
135 |
# TODO: Validate column mapping by running once
|
136 |
-
prediction_result =
|
137 |
id2label_df = None
|
138 |
if isinstance(ppl, TextClassificationPipeline):
|
139 |
try:
|
@@ -141,39 +223,32 @@ def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_map
|
|
141 |
except Exception:
|
142 |
column_mapping = {}
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
try:
|
147 |
-
results = ppl({"text": "Test"}, top_k=None)
|
148 |
-
prediction_result = {
|
149 |
-
result["label"]: result["score"] for result in results
|
150 |
-
}
|
151 |
-
except Exception as e:
|
152 |
-
# Pipeline is not executable
|
153 |
-
pass
|
154 |
-
|
155 |
-
# We assume dataset is ok here
|
156 |
-
ds = datasets.load_dataset(d_id, config)[split]
|
157 |
-
try:
|
158 |
-
id2label = ppl.model.config.id2label
|
159 |
-
id2label_mapping = text_classification_map_model_and_dataset_labels(ppl.model.config.id2label, ds.features)
|
160 |
-
id2label_df = pd.DataFrame({
|
161 |
-
"ID": [i for i in id2label.keys()],
|
162 |
-
"Model labels": [id2label[label] for label in id2label.keys()],
|
163 |
-
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
|
164 |
-
})
|
165 |
-
if "label" not in column_mapping.keys():
|
166 |
-
column_mapping["label"] = {
|
167 |
-
i: id2label_mapping[id2label[i]] for i in id2label.keys()
|
168 |
-
}
|
169 |
-
except AttributeError:
|
170 |
-
# Dataset does not have features
|
171 |
-
pass
|
172 |
|
173 |
column_mapping = json.dumps(column_mapping, indent=2)
|
174 |
|
175 |
del ppl
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
178 |
|
179 |
return (
|
@@ -248,7 +323,6 @@ with gr.Blocks(theme=theme) as iface:
|
|
248 |
],
|
249 |
value=0,
|
250 |
)
|
251 |
-
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
252 |
example_labels = gr.Label(label='Model pipeline test prediction result', visible=False)
|
253 |
|
254 |
with gr.Column():
|
@@ -278,16 +352,18 @@ with gr.Blocks(theme=theme) as iface:
|
|
278 |
id2label_mapping_dataframe = gr.DataFrame(visible=False)
|
279 |
|
280 |
with gr.Row():
|
281 |
-
|
282 |
-
value=""
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
291 |
|
292 |
with gr.Row():
|
293 |
validate_btn = gr.Button("Validate model and dataset", variant="primary")
|
|
|
7 |
from pathlib import Path
|
8 |
|
9 |
import json
|
10 |
+
import logging
|
11 |
|
12 |
import pandas as pd
|
13 |
|
|
|
65 |
for model_label in id2label_mapping.keys():
|
66 |
if model_label.upper() == label.upper():
|
67 |
return model_label, label
|
68 |
+
return None, label
|
69 |
|
70 |
|
71 |
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
72 |
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
73 |
+
dataset_labels = None
|
74 |
for feature in dataset_features.values():
|
75 |
if not isinstance(feature, datasets.ClassLabel):
|
76 |
continue
|
77 |
if len(feature.names) != len(id2label_mapping.keys()):
|
78 |
continue
|
79 |
|
80 |
+
dataset_labels = feature.names
|
81 |
+
|
82 |
# Try to match labels
|
83 |
for label in feature.names:
|
84 |
if label in id2label_mapping.keys():
|
|
|
86 |
else:
|
87 |
# Try to find case unsensative
|
88 |
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
89 |
+
if model_label is not None:
|
90 |
+
id2label_mapping[model_label] = label
|
91 |
+
|
92 |
+
return id2label_mapping, dataset_labels
|
93 |
|
94 |
+
|
95 |
+
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
96 |
+
# We assume dataset is ok here
|
97 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
98 |
+
|
99 |
+
try:
|
100 |
+
dataset_features = ds.features
|
101 |
+
except AttributeError:
|
102 |
+
# Dataset does not have features, need to provide everything
|
103 |
+
return None, None, None
|
104 |
+
|
105 |
+
# Check whether we need to infer the text input column
|
106 |
+
infer_text_input_column = True
|
107 |
+
if "text" in column_mapping.keys():
|
108 |
+
dataset_text_column = column_mapping["text"]
|
109 |
+
if dataset_text_column in dataset_features.keys():
|
110 |
+
infer_text_input_column = False
|
111 |
+
else:
|
112 |
+
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
|
113 |
+
|
114 |
+
if infer_text_input_column:
|
115 |
+
# Try to retrieve one
|
116 |
+
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
117 |
+
if len(candidates) > 0:
|
118 |
+
logging.debug(f"Candidates are {candidates}")
|
119 |
+
column_mapping["text"] = candidates[0]
|
120 |
+
else:
|
121 |
+
# Not found a text feature
|
122 |
+
return column_mapping, None, None
|
123 |
+
|
124 |
+
# Load dataset as DataFrame
|
125 |
+
df = ds.to_pandas()
|
126 |
+
|
127 |
+
# Retrieve all labels
|
128 |
+
id2label_mapping = {}
|
129 |
+
id2label = ppl.model.config.id2label
|
130 |
+
label2id = {v: k for k, v in id2label.items()}
|
131 |
+
prediction_result = None
|
132 |
+
try:
|
133 |
+
# Use the first item to test prediction
|
134 |
+
results = ppl({"text": df.head(1).at[0, column_mapping["text"]]}, top_k=None)
|
135 |
+
prediction_result = {
|
136 |
+
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
137 |
+
}
|
138 |
+
except Exception:
|
139 |
+
# Pipeline prediction failed, need to provide labels
|
140 |
+
return column_mapping, None, None
|
141 |
+
|
142 |
+
# Infer labels
|
143 |
+
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
144 |
+
if "label" in column_mapping.keys():
|
145 |
+
if not isinstance(column_mapping["label"], dict) or set(column_mapping["label"].values()) != set(dataset_labels):
|
146 |
+
logging.warning(f'Provided {column_mapping["label"]} does not match labels in Dataset')
|
147 |
+
return column_mapping, prediction_result, None
|
148 |
+
|
149 |
+
if isinstance(column_mapping["label"], dict):
|
150 |
+
for model_label in id2label_mapping.keys():
|
151 |
+
id2label_mapping[model_label] = column_mapping["label"][str(label2id[model_label])]
|
152 |
+
elif None in id2label_mapping.values():
|
153 |
+
column_mapping["label"] = {
|
154 |
+
i: None for i in id2label.keys()
|
155 |
+
}
|
156 |
+
return column_mapping, prediction_result, None
|
157 |
+
|
158 |
+
id2label_df = pd.DataFrame({
|
159 |
+
"ID": [i for i in id2label.keys()],
|
160 |
+
"Model labels": [id2label[label] for label in id2label.keys()],
|
161 |
+
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
|
162 |
+
})
|
163 |
+
if "label" not in column_mapping.keys():
|
164 |
+
column_mapping["label"] = {
|
165 |
+
i: id2label_mapping[id2label[i]] for i in id2label.keys()
|
166 |
+
}
|
167 |
+
|
168 |
+
return column_mapping, prediction_result, id2label_df
|
169 |
|
170 |
|
171 |
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping):
|
|
|
215 |
)
|
216 |
|
217 |
# TODO: Validate column mapping by running once
|
218 |
+
prediction_result = None
|
219 |
id2label_df = None
|
220 |
if isinstance(ppl, TextClassificationPipeline):
|
221 |
try:
|
|
|
223 |
except Exception:
|
224 |
column_mapping = {}
|
225 |
|
226 |
+
column_mapping, prediction_result, id2label_df = \
|
227 |
+
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
column_mapping = json.dumps(column_mapping, indent=2)
|
230 |
|
231 |
del ppl
|
232 |
|
233 |
+
if prediction_result is None:
|
234 |
+
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
|
235 |
+
return (
|
236 |
+
config, split,
|
237 |
+
gr.update(interactive=False), # Submit button
|
238 |
+
gr.update(visible=False), # Model prediction preview
|
239 |
+
gr.update(visible=False), # Label mapping preview
|
240 |
+
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
|
241 |
+
)
|
242 |
+
elif id2label_df is None:
|
243 |
+
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
244 |
+
return (
|
245 |
+
config, split,
|
246 |
+
gr.update(interactive=False), # Submit button
|
247 |
+
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
248 |
+
gr.update(visible=False), # Label mapping preview
|
249 |
+
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping
|
250 |
+
)
|
251 |
+
|
252 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
253 |
|
254 |
return (
|
|
|
323 |
],
|
324 |
value=0,
|
325 |
)
|
|
|
326 |
example_labels = gr.Label(label='Model pipeline test prediction result', visible=False)
|
327 |
|
328 |
with gr.Column():
|
|
|
352 |
id2label_mapping_dataframe = gr.DataFrame(visible=False)
|
353 |
|
354 |
with gr.Row():
|
355 |
+
with gr.Accordion("Advance", open=False):
|
356 |
+
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
357 |
+
column_mapping_input = gr.Textbox(
|
358 |
+
value="",
|
359 |
+
lines=5,
|
360 |
+
label="Column mapping",
|
361 |
+
placeholder="Description of mapping of columns in model to dataset, in json format, e.g.:\n"
|
362 |
+
'{\n'
|
363 |
+
' "text": "context",\n'
|
364 |
+
' "label": {0: "Positive", 1: "Negative"}\n'
|
365 |
+
'}',
|
366 |
+
)
|
367 |
|
368 |
with gr.Row():
|
369 |
validate_btn = gr.Button("Validate model and dataset", variant="primary")
|