Spaces:
Sleeping
Sleeping
File size: 17,524 Bytes
d6b3b9f 01942d8 88f768f 71788ef 34009a0 60a5363 d6b3b9f 01c4e21 583defc 0c7d7d0 3a0ee14 d6b3b9f 71788ef d6b3b9f 88f768f 1aa43b4 88f768f 01942d8 0c7d7d0 88f768f 0c7d7d0 01c4e21 0c7d7d0 01c4e21 3a0ee14 01c4e21 88f768f 0c7d7d0 01c4e21 0c7d7d0 01c4e21 3a0ee14 01c4e21 88f768f 01942d8 27538a2 01942d8 88f768f 27538a2 1bf401f 88f768f 27538a2 1bf401f 27538a2 01c4e21 0c7d7d0 01c4e21 3a0ee14 01c4e21 27538a2 85095eb 583defc 01c4e21 0c7d7d0 01c4e21 3a0ee14 85095eb 01942d8 01c4e21 3a0ee14 85095eb 3a0ee14 85095eb 3a0ee14 85095eb 0c7d7d0 85095eb 3a0ee14 85095eb ea670d5 01c4e21 0c7d7d0 1aa43b4 0c7d7d0 01c4e21 0c7d7d0 3a0ee14 01c4e21 ea670d5 3a0ee14 0942332 3a0ee14 f8d2118 3a0ee14 f8d2118 0942332 d57b1dd 60a5363 3a0ee14 0942332 3a0ee14 60a5363 d57b1dd 34009a0 60a5363 34009a0 60a5363 583defc 60a5363 d57b1dd 79d57ff 01942d8 d6b3b9f 1aa43b4 0c7d7d0 1aa43b4 0c7d7d0 1aa43b4 0c7d7d0 1aa43b4 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 1aa43b4 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 27381a7 3a0ee14 27381a7 1aa43b4 d6b3b9f 1aa43b4 d6b3b9f 1aa43b4 d6b3b9f 1aa43b4 54410d4 1aa43b4 3a0ee14 0c7d7d0 1aa43b4 3a0ee14 1aa43b4 3a0ee14 1aa43b4 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 27381a7 ea670d5 1aa43b4 ea670d5 0c7d7d0 ea670d5 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 0c7d7d0 3a0ee14 ea670d5 27381a7 3a0ee14 27381a7 01942d8 79d57ff 01942d8 1aa43b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import gradio as gr
import datasets
import huggingface_hub
import os
import time
import subprocess
import logging
import json
from transformers.pipelines import TextClassificationPipeline
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
from utils import read_scanners, write_scanners, read_inference_type, write_inference_type, convert_column_mapping_to_json
HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
theme = gr.themes.Soft(
primary_hue="green",
)
def check_model(model_id):
try:
task = huggingface_hub.model_info(model_id).pipeline_tag
except Exception:
return None, None
try:
from transformers import pipeline
ppl = pipeline(task=task, model=model_id)
return model_id, ppl
except Exception as e:
return model_id, e
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
try:
configs = datasets.get_dataset_config_names(dataset_id)
except Exception:
# Dataset may not exist
return None, dataset_config, dataset_split
if dataset_config not in configs:
# Need to choose dataset subset (config)
return dataset_id, configs, dataset_split
ds = datasets.load_dataset(dataset_id, dataset_config)
if isinstance(ds, datasets.DatasetDict):
# Need to choose dataset split
if dataset_split not in ds.keys():
return dataset_id, None, list(ds.keys())
elif not isinstance(ds, datasets.Dataset):
# Unknown type
return dataset_id, None, None
return dataset_id, dataset_config, dataset_split
def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping='{}'):
# Validate model
if m_id is None:
gr.Warning('Model is not accessible. Please set your HF_TOKEN if it is a private model.')
return (
gr.update(interactive=False), # Submit button
gr.update(visible=True), # Loading row
gr.update(visible=False), # Preview row
gr.update(visible=False), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=False), # feature mapping preview
)
if isinstance(ppl, Exception):
gr.Warning(f'Failed to load model": {ppl}')
return (
gr.update(interactive=False), # Submit button
gr.update(visible=True), # Loading row
gr.update(visible=False), # Preview row
gr.update(visible=False), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=False), # feature mapping preview
)
# Validate dataset
d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split)
dataset_ok = False
if d_id is None:
gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.')
elif isinstance(config, list):
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.')
config = gr.update(choices=config, value=config[0])
elif isinstance(split, list):
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.')
split = gr.update(choices=split, value=split[0])
else:
dataset_ok = True
if not dataset_ok:
return (
gr.update(interactive=False), # Submit button
gr.update(visible=True), # Loading row
gr.update(visible=False), # Preview row
gr.update(visible=False), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=False), # feature mapping preview
)
# TODO: Validate column mapping by running once
prediction_result = None
id2label_df = None
if isinstance(ppl, TextClassificationPipeline):
try:
print('validating phase, ', column_mapping)
column_mapping = json.loads(column_mapping)
except Exception:
column_mapping = {}
column_mapping, prediction_input, prediction_result, id2label_df, feature_df = \
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
column_mapping = json.dumps(column_mapping, indent=2)
if prediction_result is None and id2label_df is not None:
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
return (
gr.update(interactive=False), # Submit button
gr.update(visible=False), # Loading row
gr.update(visible=True), # Preview row
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
)
elif id2label_df is None:
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
return (
gr.update(interactive=False), # Submit button
gr.update(visible=False), # Loading row
gr.update(visible=True), # Preview row
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
gr.update(value=prediction_result, visible=True), # Model prediction preview
gr.update(visible=True, interactive=True), # Label mapping preview
gr.update(visible=True, interactive=True), # feature mapping preview
)
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
return (
gr.update(interactive=True), # Submit button
gr.update(visible=False), # Loading row
gr.update(visible=True), # Preview row
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
gr.update(value=prediction_result, visible=True), # Model prediction preview
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
)
def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local):
label_mapping = {}
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
label_mapping.update({str(i): label})
feature_mapping = {}
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
feature_mapping.update({feature_mapping_dataframe["Model Input Features"][i]: feature})
# TODO: Set column mapping for some dataset such as `amazon_polarity`
if local:
command = [
"python",
"cli.py",
"--loader", "huggingface",
"--model", m_id,
"--dataset", d_id,
"--dataset_config", config,
"--dataset_split", split,
"--hf_token", os.environ.get(HF_WRITE_TOKEN),
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
"--output_format", "markdown",
"--output_portal", "huggingface",
"--feature_mapping", json.dumps(feature_mapping),
"--label_mapping", json.dumps(label_mapping),
"--scan_config", "./config.yaml",
]
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
start = time.time()
logging.info(f"Start local evaluation on {eval_str}")
evaluator = subprocess.Popen(
command,
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
stderr=subprocess.STDOUT,
)
result = evaluator.wait()
logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
else:
gr.Info("TODO: Submit task to an endpoint")
return gr.update(interactive=True) # Submit button
with gr.Blocks(theme=theme) as iface:
with gr.Tab("Text Classification"):
def check_dataset_and_get_config(dataset_id):
try:
configs = datasets.get_dataset_config_names(dataset_id)
return gr.Dropdown(configs, value=configs[0], visible=True)
except Exception:
# Dataset may not exist
pass
def check_dataset_and_get_split(dataset_config, dataset_id):
try:
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
return gr.Dropdown(splits, value=splits[0], visible=True)
except Exception as e:
# Dataset may not exist
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
pass
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
column_mapping = '{}'
_, ppl = check_model(model_id=model_id)
if id2label_mapping_dataframe is not None:
labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
column_mapping = json.dumps({**labels, **features}, indent=2)
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
gr.Warning('Label mapping table has invalid contents. Please check again.')
return (gr.update(interactive=False),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update())
else:
if model_id and dataset_id and dataset_config and dataset_split:
return try_validate(model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping)
else:
return (gr.update(interactive=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False))
with gr.Row():
gr.Markdown('''
<h1 style="text-align: center;">
Giskard Evaluator
</h1>
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
''')
with gr.Row():
run_local = gr.Checkbox(value=True, label="Run in this Space")
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
with gr.Row() as advanced_row:
selected = read_scanners('./config.yaml')
scan_config = selected + ['data_leakage']
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
)
dataset_id_input = gr.Textbox(
label="Hugging Face Dataset id",
placeholder="tweet_eval",
)
with gr.Row():
dataset_config_input = gr.Dropdown(['default'], value='default', label='Dataset Config', visible=False)
dataset_split_input = gr.Dropdown(['default'], value='default', label='Dataset Split', visible=False)
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
dataset_id_input.submit(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
dataset_config_input.blur(
check_dataset_and_get_split,
inputs=[dataset_config_input, dataset_id_input],
outputs=[dataset_split_input])
with gr.Row(visible=True) as loading_row:
gr.Markdown('''
<p style="text-align: center;">
🚀🐢Please validate your model and dataset first...
</p>
''')
with gr.Row(visible=False) as preview_row:
gr.Markdown('''
<h1 style="text-align: center;">
Confirm Pre-processing Details
</h1>
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
''')
with gr.Row():
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
feature_mapping_dataframe = gr.DataFrame(label="Preview of feature mapping", interactive=True, visible=False)
with gr.Row():
example_input = gr.Markdown('Sample Input: ', visible=False)
with gr.Row():
example_labels = gr.Label(label='Model Prediction Sample', visible=False)
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=False,
size="lg",
)
model_id_input.blur(gate_validate_btn,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
dataset_id_input.blur(gate_validate_btn,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
dataset_config_input.input(gate_validate_btn,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
dataset_split_input.input(gate_validate_btn,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
id2label_mapping_dataframe.input(gate_validate_btn,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
feature_mapping_dataframe.input(gate_validate_btn,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
scanners.change(write_scanners, inputs=scanners)
run_inference.change(
write_inference_type,
inputs=[run_inference]
)
run_btn.click(
try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
id2label_mapping_dataframe,
feature_mapping_dataframe,
run_local,
],
outputs=[
run_btn,
],
)
with gr.Tab("More"):
pass
if __name__ == "__main__":
iface.queue(max_size=20).launch() |