|
import gradio as gr |
|
from transformers import MT5Tokenizer, MT5ForConditionalGeneration |
|
|
|
def summary(text): |
|
|
|
mt5_model = MT5ForConditionalGeneration.from_pretrained("google/mt5-large") |
|
mt5_tokenizer = MT5Tokenizer.from_pretrained("google/mt5-large") |
|
input_tokenized = mt5_tokenizer.encode(text, return_tensors='pt') |
|
summary_ids = mt5_model.generate(input_tokenized, |
|
length_penalty = 1, |
|
min_length = 0, |
|
max_length = 200, |
|
num_beams = 1, |
|
no_repeat_ngram_size = 2, |
|
early_stopping = True) |
|
output = mt5_tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
return output[0] |
|
|
|
iface = gr.Interface(fn=summary, inputs="text", outputs="text") |
|
iface.launch() |