import gradio as gr from transformers import MT5Tokenizer, MT5ForConditionalGeneration def summary(text): mt5_model = MT5ForConditionalGeneration.from_pretrained("google/mt5-large") mt5_tokenizer = MT5Tokenizer.from_pretrained("google/mt5-large") input_tokenized = mt5_tokenizer.encode(text, return_tensors='pt') summary_ids = mt5_model.generate(input_tokenized, length_penalty = 1, min_length = 0, max_length = 200, num_beams = 1, no_repeat_ngram_size = 2, early_stopping = True) output = mt5_tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) return output[0] iface = gr.Interface(fn=summary, inputs="text", outputs="text") iface.launch()