fffiloni commited on
Commit
57f0f48
·
1 Parent(s): f1fbc90

Create open_sem.py

Browse files
Files changed (1) hide show
  1. tasks/open_sem.py +57 -0
tasks/open_sem.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ import os
9
+ import cv2
10
+ import torch
11
+ import numpy as np
12
+ from PIL import Image
13
+ from torchvision import transforms
14
+ from utils.visualizer import Visualizer
15
+ from detectron2.utils.colormap import random_color
16
+ from detectron2.data import MetadataCatalog
17
+
18
+
19
+ t = []
20
+ t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
21
+ transform = transforms.Compose(t)
22
+ metadata = MetadataCatalog.get('ade20k_panoptic_train')
23
+
24
+ def open_semseg(model, image, texts, inpainting_text, *args, **kwargs):
25
+ stuff_classes = [x.strip() for x in texts.split(',')]
26
+ stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(stuff_classes))]
27
+ stuff_dataset_id_to_contiguous_id = {x:x for x in range(len(stuff_classes))}
28
+
29
+ MetadataCatalog.get("demo").set(
30
+ stuff_colors=stuff_colors,
31
+ stuff_classes=stuff_classes,
32
+ stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id,
33
+ )
34
+ model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(stuff_classes + ["background"], is_eval=True)
35
+ metadata = MetadataCatalog.get('demo')
36
+ model.model.metadata = metadata
37
+ model.model.sem_seg_head.num_classes = len(stuff_classes)
38
+
39
+ with torch.no_grad():
40
+ image_ori = transform(image)
41
+ width = image_ori.size[0]
42
+ height = image_ori.size[1]
43
+ image = transform(image_ori)
44
+ image = np.asarray(image)
45
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
46
+
47
+ batch_inputs = [{'image': images, 'height': height, 'width': width}]
48
+ outputs = model.forward(batch_inputs)
49
+ visual = Visualizer(image_ori, metadata=metadata)
50
+
51
+ sem_seg = outputs[-1]['sem_seg'].max(0)[1]
52
+ demo = visual.draw_sem_seg(sem_seg.cpu(), alpha=0.5) # rgb Image
53
+ res = demo.get_image()
54
+
55
+ MetadataCatalog.remove('demo')
56
+ torch.cuda.empty_cache()
57
+ return Image.fromarray(res), '', None