Spaces:
Paused
Paused
Create open_pano.py
Browse files- tasks/open_pano.py +70 -0
tasks/open_pano.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
|
3 |
+
# Copyright (c) 2022 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Xueyan Zou ([email protected])
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
from torchvision import transforms
|
12 |
+
from utils.visualizer import Visualizer
|
13 |
+
from detectron2.utils.colormap import random_color
|
14 |
+
from detectron2.data import MetadataCatalog
|
15 |
+
|
16 |
+
|
17 |
+
t = []
|
18 |
+
t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
|
19 |
+
transform = transforms.Compose(t)
|
20 |
+
metadata = MetadataCatalog.get('ade20k_panoptic_train')
|
21 |
+
|
22 |
+
def open_panoseg(model, image, texts, inpainting_text, *args, **kwargs):
|
23 |
+
stuff_classes = [x.strip() for x in texts.split(';')[0].replace('stuff:','').split(',')]
|
24 |
+
thing_classes = [x.strip() for x in texts.split(';')[1].replace('thing:','').split(',')]
|
25 |
+
thing_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(thing_classes))]
|
26 |
+
stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(stuff_classes))]
|
27 |
+
thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))}
|
28 |
+
stuff_dataset_id_to_contiguous_id = {x+len(thing_classes):x for x in range(len(stuff_classes))}
|
29 |
+
|
30 |
+
MetadataCatalog.get("demo").set(
|
31 |
+
thing_colors=thing_colors,
|
32 |
+
thing_classes=thing_classes,
|
33 |
+
thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id,
|
34 |
+
stuff_colors=stuff_colors,
|
35 |
+
stuff_classes=stuff_classes,
|
36 |
+
stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id,
|
37 |
+
)
|
38 |
+
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + stuff_classes + ["background"], is_eval=True)
|
39 |
+
metadata = MetadataCatalog.get('demo')
|
40 |
+
model.model.metadata = metadata
|
41 |
+
model.model.sem_seg_head.num_classes = len(thing_classes + stuff_classes)
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
image_ori = transform(image)
|
45 |
+
width = image_ori.size[0]
|
46 |
+
height = image_ori.size[1]
|
47 |
+
image = transform(image_ori)
|
48 |
+
image = np.asarray(image)
|
49 |
+
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
|
50 |
+
|
51 |
+
batch_inputs = [{'image': images, 'height': height, 'width': width}]
|
52 |
+
outputs = model.forward(batch_inputs)
|
53 |
+
visual = Visualizer(image_ori, metadata=metadata)
|
54 |
+
|
55 |
+
pano_seg = outputs[-1]['panoptic_seg'][0]
|
56 |
+
pano_seg_info = outputs[-1]['panoptic_seg'][1]
|
57 |
+
|
58 |
+
for i in range(len(pano_seg_info)):
|
59 |
+
if pano_seg_info[i]['category_id'] in metadata.thing_dataset_id_to_contiguous_id.keys():
|
60 |
+
pano_seg_info[i]['category_id'] = metadata.thing_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']]
|
61 |
+
else:
|
62 |
+
pano_seg_info[i]['isthing'] = False
|
63 |
+
pano_seg_info[i]['category_id'] = metadata.stuff_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']]
|
64 |
+
|
65 |
+
demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image
|
66 |
+
res = demo.get_image()
|
67 |
+
|
68 |
+
MetadataCatalog.remove('demo')
|
69 |
+
torch.cuda.empty_cache()
|
70 |
+
return Image.fromarray(res), '', None
|