fffiloni commited on
Commit
06e7f8e
·
1 Parent(s): 57f0f48

Create ref_cap.py

Browse files
Files changed (1) hide show
  1. tasks/ref_cap.py +68 -0
tasks/ref_cap.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import numpy as np
11
+ from PIL import Image
12
+ from torchvision import transforms
13
+ from utils.visualizer import Visualizer
14
+ from detectron2.data import MetadataCatalog
15
+
16
+ t = []
17
+ t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
18
+ transform_ret = transforms.Compose(t)
19
+ t = []
20
+ t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
21
+ transform_grd = transforms.Compose(t)
22
+
23
+ metedata = MetadataCatalog.get('coco_2017_train_panoptic')
24
+
25
+ def referring_captioning(model, image, texts, inpainting_text, *args, **kwargs):
26
+ model_last, model_cap = model
27
+ with torch.no_grad():
28
+ image_ori = image
29
+ image = transform_grd(image)
30
+ width = image.size[0]
31
+ height = image.size[1]
32
+ image = np.asarray(image)
33
+ image_ori_ = image
34
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
35
+ texts_input = [[texts.strip() if texts.endswith('.') else (texts + '.')]]
36
+
37
+ batch_inputs = [{'image': images, 'groundings': {'texts':texts_input}, 'height': height, 'width': width}]
38
+ outputs = model_last.model.evaluate_grounding(batch_inputs, None)
39
+
40
+ grd_mask = (outputs[-1]['grounding_mask'] > 0).float()
41
+ grd_mask_ = (1 - F.interpolate(grd_mask[None,], (224, 224), mode='nearest')[0]).bool()
42
+
43
+ color = [252/255, 91/255, 129/255]
44
+ visual = Visualizer(image_ori_, metadata=metedata)
45
+ demo = visual.draw_binary_mask(grd_mask.cpu().numpy()[0], color=color, text=texts)
46
+ res = demo.get_image()
47
+
48
+ if (1 - grd_mask_.float()).sum() < 5:
49
+ torch.cuda.empty_cache()
50
+ return Image.fromarray(res), 'n/a', None
51
+
52
+ grd_mask_ = grd_mask_ * 0
53
+ image = transform_ret(image_ori)
54
+ image_ori = np.asarray(image_ori)
55
+ image = np.asarray(image)
56
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
57
+ batch_inputs = [{'image': images, 'image_id': 0, 'captioning_mask': grd_mask_}]
58
+
59
+ token_text = texts.replace('.','') if texts.endswith('.') else texts
60
+ token = model_cap.model.sem_seg_head.predictor.lang_encoder.tokenizer.encode(token_text)
61
+ token = torch.tensor(token)[None,:-1]
62
+
63
+ outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={'token': token})
64
+ # outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={})
65
+ text = outputs[-1]['captioning_text']
66
+
67
+ torch.cuda.empty_cache()
68
+ return Image.fromarray(res), text, None