Spaces:
Paused
Paused
# -------------------------------------------------------- | |
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Xueyan Zou ([email protected]) | |
# -------------------------------------------------------- | |
import torch | |
import numpy as np | |
from PIL import Image | |
from torchvision import transforms | |
from utils.visualizer import Visualizer | |
from detectron2.utils.colormap import random_color | |
from detectron2.data import MetadataCatalog | |
t = [] | |
t.append(transforms.Resize(512, interpolation=Image.BICUBIC)) | |
transform = transforms.Compose(t) | |
metadata = MetadataCatalog.get('ade20k_panoptic_train') | |
def open_panoseg(model, image, texts, inpainting_text, *args, **kwargs): | |
stuff_classes = [x.strip() for x in texts.split(';')[0].replace('stuff:','').split(',')] | |
thing_classes = [x.strip() for x in texts.split(';')[1].replace('thing:','').split(',')] | |
thing_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(thing_classes))] | |
stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(stuff_classes))] | |
thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))} | |
stuff_dataset_id_to_contiguous_id = {x+len(thing_classes):x for x in range(len(stuff_classes))} | |
MetadataCatalog.get("demo").set( | |
thing_colors=thing_colors, | |
thing_classes=thing_classes, | |
thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id, | |
stuff_colors=stuff_colors, | |
stuff_classes=stuff_classes, | |
stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id, | |
) | |
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + stuff_classes + ["background"], is_eval=True) | |
metadata = MetadataCatalog.get('demo') | |
model.model.metadata = metadata | |
model.model.sem_seg_head.num_classes = len(thing_classes + stuff_classes) | |
with torch.no_grad(): | |
image_ori = transform(image) | |
width = image_ori.size[0] | |
height = image_ori.size[1] | |
image = transform(image_ori) | |
image = np.asarray(image) | |
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda() | |
batch_inputs = [{'image': images, 'height': height, 'width': width}] | |
outputs = model.forward(batch_inputs) | |
visual = Visualizer(image_ori, metadata=metadata) | |
pano_seg = outputs[-1]['panoptic_seg'][0] | |
pano_seg_info = outputs[-1]['panoptic_seg'][1] | |
for i in range(len(pano_seg_info)): | |
if pano_seg_info[i]['category_id'] in metadata.thing_dataset_id_to_contiguous_id.keys(): | |
pano_seg_info[i]['category_id'] = metadata.thing_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']] | |
else: | |
pano_seg_info[i]['isthing'] = False | |
pano_seg_info[i]['category_id'] = metadata.stuff_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']] | |
demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image | |
res = demo.get_image() | |
MetadataCatalog.remove('demo') | |
torch.cuda.empty_cache() | |
return Image.fromarray(res), '', None |