Spaces:
Paused
Paused
File size: 2,814 Bytes
06e7f8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
from torchvision import transforms
from utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
t = []
t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
transform_ret = transforms.Compose(t)
t = []
t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
transform_grd = transforms.Compose(t)
metedata = MetadataCatalog.get('coco_2017_train_panoptic')
def referring_captioning(model, image, texts, inpainting_text, *args, **kwargs):
model_last, model_cap = model
with torch.no_grad():
image_ori = image
image = transform_grd(image)
width = image.size[0]
height = image.size[1]
image = np.asarray(image)
image_ori_ = image
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
texts_input = [[texts.strip() if texts.endswith('.') else (texts + '.')]]
batch_inputs = [{'image': images, 'groundings': {'texts':texts_input}, 'height': height, 'width': width}]
outputs = model_last.model.evaluate_grounding(batch_inputs, None)
grd_mask = (outputs[-1]['grounding_mask'] > 0).float()
grd_mask_ = (1 - F.interpolate(grd_mask[None,], (224, 224), mode='nearest')[0]).bool()
color = [252/255, 91/255, 129/255]
visual = Visualizer(image_ori_, metadata=metedata)
demo = visual.draw_binary_mask(grd_mask.cpu().numpy()[0], color=color, text=texts)
res = demo.get_image()
if (1 - grd_mask_.float()).sum() < 5:
torch.cuda.empty_cache()
return Image.fromarray(res), 'n/a', None
grd_mask_ = grd_mask_ * 0
image = transform_ret(image_ori)
image_ori = np.asarray(image_ori)
image = np.asarray(image)
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
batch_inputs = [{'image': images, 'image_id': 0, 'captioning_mask': grd_mask_}]
token_text = texts.replace('.','') if texts.endswith('.') else texts
token = model_cap.model.sem_seg_head.predictor.lang_encoder.tokenizer.encode(token_text)
token = torch.tensor(token)[None,:-1]
outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={'token': token})
# outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={})
text = outputs[-1]['captioning_text']
torch.cuda.empty_cache()
return Image.fromarray(res), text, None |