File size: 6,109 Bytes
0c98d02
 
398c97e
0c98d02
18b0529
85d7512
 
c4e12c1
 
85d7512
 
 
 
c2149f9
18b0529
c380881
c2149f9
18b0529
 
c4e12c1
18b0529
b0e04c2
 
 
 
 
 
 
 
 
 
 
 
02b84d5
b0e04c2
 
 
02b84d5
b0e04c2
c0f3731
b0e04c2
 
fba55a6
b0e04c2
02b84d5
b0e04c2
02b84d5
b0e04c2
 
 
 
 
 
 
fba55a6
b0e04c2
 
fba55a6
9ca1653
fba55a6
 
 
 
 
b0e04c2
 
 
 
 
 
 
 
 
 
 
 
 
bebe771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e04c2
bebe771
 
b0e04c2
bebe771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e04c2
 
 
 
 
 
 
 
 
 
c4e12c1
 
b0e04c2
 
c4e12c1
 
 
 
 
 
 
 
 
b0e04c2
 
c4e12c1
 
b0e04c2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr

import torch

from spectro import wav_bytes_from_spectrogram_image
from diffusers import StableDiffusionPipeline

from share_btn import community_icon_html, loading_icon_html, share_js

model_id = "riffusion/riffusion-model-v1"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

def predict(prompt):
    spec = pipe(prompt).images[0]
    print(spec)
    wav = wav_bytes_from_spectrogram_image(spec)
    with open("output.wav", "wb") as f:
        f.write(wav[0].getbuffer())
    return spec, 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

title = """
    <div style="text-align: center; max-width: 500px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
            margin-bottom: 10px;
        "
        >
        <h1 style="font-weight: 600; margin-bottom: 7px;">
            Riffusion real-time music generation
        </h1>
        </div>
        <p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;">
        Describe a musical prompt, generate music by getting a spectrogram image & sound.
    </div>
"""

article = """
    <p style="font-size: 0.8em;line-height: 1.2em;border: 1px solid #374151;border-radius: 8px;padding: 20px;">
    About the model: Riffusion is a latent text-to-image diffusion model capable of generating spectrogram images given any text input. These spectrograms can be converted into audio clips.
    <br />β€”
    <br />The Riffusion model was created by fine-tuning the Stable-Diffusion-v1-5 checkpoint.
    <br />β€”
    <br />The model is intended for research purposes only. Possible research areas and tasks include 
    generation of artworks, audio, and use in creative processes, applications in educational or creative tools, research on generative models.

    </p>
    <div class="footer">
        <p>
        <a href="https://huggingface.co./riffusion/riffusion-model-v1" target="_blank">Riffusion model</a> by Seth Forsgren and Hayk Martiros - 
        Demo by πŸ€— <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a>
        </p>
    </div>

    <p style="text-align: center;font-size: 94%">
        Do you need faster results ? You can skip the queue by duplicating this space: 
        <span style="display: flex;align-items: center;justify-content: center;height: 30px;">
        <a href="https://huggingface.co./fffiloni/spectrogram-to-music?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>       
        </span>
    </p>
"""

css = '''
    #col-container, #col-container-2 {max-width: 510px; margin-left: auto; margin-right: auto;}
    a {text-decoration-line: underline; font-weight: 600;}
    div#record_btn > .mt-6 {
        margin-top: 0!important;
    }
    div#record_btn > .mt-6 button {
        width: 100%;
        height: 40px;
    }
    .footer {
        margin-bottom: 45px;
        margin-top: 10px;
        text-align: center;
        border-bottom: 1px solid #e5e5e5;
    }
    .footer>p {
        font-size: .8rem;
        display: inline-block;
        padding: 0 10px;
        transform: translateY(10px);
        background: white;
    }
    .dark .footer {
        border-color: #303030;
    }
    .dark .footer>p {
        background: #0b0f19;
    }
    .animate-spin {
        animation: spin 1s linear infinite;
    }
    @keyframes spin {
        from {
            transform: rotate(0deg);
        }
        to {
            transform: rotate(360deg);
        }
    }
    #share-btn-container {
        display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
    }
    #share-btn {
        all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
    }
    #share-btn * {
        all: unset;
    }
    #share-btn-container div:nth-child(-n+2){
        width: auto !important;
        min-height: 0px !important;
    }
    #share-btn-container .wrap {
        display: none !important;
    }

'''
 


with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        
        gr.HTML(title)
        
        prompt_input = gr.Textbox(placeholder="a cat diva singing in a New York jazz club", label="Musical prompt", elem_id="prompt-in")
        send_btn = gr.Button(value="Get a new spectrogram ! ", elem_id="submit-btn")
            
    with gr.Column(elem_id="col-container-2"):
        
        spectrogram_output = gr.Image(label="spectrogram image result", elem_id="img-out")
        sound_output = gr.Audio(type='filepath', label="spectrogram sound", elem_id="music-out")
        
        with gr.Group(elem_id="share-btn-container"):
            community_icon = gr.HTML(community_icon_html, visible=False)
            loading_icon = gr.HTML(loading_icon_html, visible=False)
            share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
        
        gr.HTML(article)
    
    send_btn.click(predict, inputs=[prompt_input], outputs=[spectrogram_output, sound_output, share_button, community_icon, loading_icon])
    share_button.click(None, [], [], _js=share_js)

demo.queue(max_size=250).launch(debug=True)