Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
"""
|
4 |
+
Audio processing tools to convert between spectrogram images and waveforms.
|
5 |
+
"""
|
6 |
+
import io
|
7 |
+
import typing as T
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import pydub
|
12 |
+
from scipy.io import wavfile
|
13 |
+
import torch
|
14 |
+
import torchaudio
|
15 |
+
|
16 |
+
def wav_bytes_from_spectrogram_image(image: Image.Image) -> T.Tuple[io.BytesIO, float]:
|
17 |
+
"""
|
18 |
+
Reconstruct a WAV audio clip from a spectrogram image. Also returns the duration in seconds.
|
19 |
+
"""
|
20 |
+
|
21 |
+
max_volume = 50
|
22 |
+
power_for_image = 0.25
|
23 |
+
Sxx = spectrogram_from_image(image, max_volume=max_volume, power_for_image=power_for_image)
|
24 |
+
|
25 |
+
sample_rate = 44100 # [Hz]
|
26 |
+
clip_duration_ms = 5000 # [ms]
|
27 |
+
|
28 |
+
bins_per_image = 512
|
29 |
+
n_mels = 512
|
30 |
+
|
31 |
+
# FFT parameters
|
32 |
+
window_duration_ms = 100 # [ms]
|
33 |
+
padded_duration_ms = 400 # [ms]
|
34 |
+
step_size_ms = 10 # [ms]
|
35 |
+
|
36 |
+
# Derived parameters
|
37 |
+
num_samples = int(image.width / float(bins_per_image) * clip_duration_ms) * sample_rate
|
38 |
+
n_fft = int(padded_duration_ms / 1000.0 * sample_rate)
|
39 |
+
hop_length = int(step_size_ms / 1000.0 * sample_rate)
|
40 |
+
win_length = int(window_duration_ms / 1000.0 * sample_rate)
|
41 |
+
|
42 |
+
samples = waveform_from_spectrogram(
|
43 |
+
Sxx=Sxx,
|
44 |
+
n_fft=n_fft,
|
45 |
+
hop_length=hop_length,
|
46 |
+
win_length=win_length,
|
47 |
+
num_samples=num_samples,
|
48 |
+
sample_rate=sample_rate,
|
49 |
+
mel_scale=True,
|
50 |
+
n_mels=n_mels,
|
51 |
+
max_mel_iters=200,
|
52 |
+
num_griffin_lim_iters=32,
|
53 |
+
)
|
54 |
+
|
55 |
+
wav_bytes = io.BytesIO()
|
56 |
+
wavfile.write(wav_bytes, sample_rate, samples.astype(np.int16))
|
57 |
+
wav_bytes.seek(0)
|
58 |
+
|
59 |
+
duration_s = float(len(samples)) / sample_rate
|
60 |
+
|
61 |
+
return wav_bytes
|
62 |
+
|
63 |
+
gr.Interface(fn=wav_bytes_from_spectrogram_image, inputs=[gr.Image()], outputs=[gr.Audio()]).launch()
|