DiffuEraser-demo / propainter /core /trainer_flow_w_edge.py
fffiloni's picture
Migrated from GitHub
8eb8300 verified
raw
history blame
15.6 kB
import os
import glob
import logging
import importlib
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from core.prefetch_dataloader import PrefetchDataLoader, CPUPrefetcher
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from core.lr_scheduler import MultiStepRestartLR, CosineAnnealingRestartLR
from core.dataset import TrainDataset
from model.modules.flow_comp_raft import RAFT_bi, FlowLoss, EdgeLoss
# from skimage.feature import canny
from model.canny.canny_filter import Canny
from RAFT.utils.flow_viz_pt import flow_to_image
class Trainer:
def __init__(self, config):
self.config = config
self.epoch = 0
self.iteration = 0
self.num_local_frames = config['train_data_loader']['num_local_frames']
self.num_ref_frames = config['train_data_loader']['num_ref_frames']
# setup data set and data loader
self.train_dataset = TrainDataset(config['train_data_loader'])
self.train_sampler = None
self.train_args = config['trainer']
if config['distributed']:
self.train_sampler = DistributedSampler(
self.train_dataset,
num_replicas=config['world_size'],
rank=config['global_rank'])
dataloader_args = dict(
dataset=self.train_dataset,
batch_size=self.train_args['batch_size'] // config['world_size'],
shuffle=(self.train_sampler is None),
num_workers=self.train_args['num_workers'],
sampler=self.train_sampler,
drop_last=True)
self.train_loader = PrefetchDataLoader(self.train_args['num_prefetch_queue'], **dataloader_args)
self.prefetcher = CPUPrefetcher(self.train_loader)
# set raft
self.fix_raft = RAFT_bi(device = self.config['device'])
self.flow_loss = FlowLoss()
self.edge_loss = EdgeLoss()
self.canny = Canny(sigma=(2,2), low_threshold=0.1, high_threshold=0.2)
# setup models including generator and discriminator
net = importlib.import_module('model.' + config['model']['net'])
self.netG = net.RecurrentFlowCompleteNet()
# print(self.netG)
self.netG = self.netG.to(self.config['device'])
# setup optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
self.load()
if config['distributed']:
self.netG = DDP(self.netG,
device_ids=[self.config['local_rank']],
output_device=self.config['local_rank'],
broadcast_buffers=True,
find_unused_parameters=True)
# set summary writer
self.dis_writer = None
self.gen_writer = None
self.summary = {}
if self.config['global_rank'] == 0 or (not config['distributed']):
self.gen_writer = SummaryWriter(
os.path.join(config['save_dir'], 'gen'))
def setup_optimizers(self):
"""Set up optimizers."""
backbone_params = []
for name, param in self.netG.named_parameters():
if param.requires_grad:
backbone_params.append(param)
else:
print(f'Params {name} will not be optimized.')
optim_params = [
{
'params': backbone_params,
'lr': self.config['trainer']['lr']
},
]
self.optimG = torch.optim.Adam(optim_params,
betas=(self.config['trainer']['beta1'],
self.config['trainer']['beta2']))
def setup_schedulers(self):
"""Set up schedulers."""
scheduler_opt = self.config['trainer']['scheduler']
scheduler_type = scheduler_opt.pop('type')
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
self.scheG = MultiStepRestartLR(
self.optimG,
milestones=scheduler_opt['milestones'],
gamma=scheduler_opt['gamma'])
elif scheduler_type == 'CosineAnnealingRestartLR':
self.scheG = CosineAnnealingRestartLR(
self.optimG,
periods=scheduler_opt['periods'],
restart_weights=scheduler_opt['restart_weights'])
else:
raise NotImplementedError(
f'Scheduler {scheduler_type} is not implemented yet.')
def update_learning_rate(self):
"""Update learning rate."""
self.scheG.step()
def get_lr(self):
"""Get current learning rate."""
return self.optimG.param_groups[0]['lr']
def add_summary(self, writer, name, val):
"""Add tensorboard summary."""
if name not in self.summary:
self.summary[name] = 0
self.summary[name] += val
n = self.train_args['log_freq']
if writer is not None and self.iteration % n == 0:
writer.add_scalar(name, self.summary[name] / n, self.iteration)
self.summary[name] = 0
def load(self):
"""Load netG."""
# get the latest checkpoint
model_path = self.config['save_dir']
if os.path.isfile(os.path.join(model_path, 'latest.ckpt')):
latest_epoch = open(os.path.join(model_path, 'latest.ckpt'),
'r').read().splitlines()[-1]
else:
ckpts = [
os.path.basename(i).split('.pth')[0]
for i in glob.glob(os.path.join(model_path, '*.pth'))
]
ckpts.sort()
latest_epoch = ckpts[-1][4:] if len(ckpts) > 0 else None
if latest_epoch is not None:
gen_path = os.path.join(model_path, f'gen_{int(latest_epoch):06d}.pth')
opt_path = os.path.join(model_path,f'opt_{int(latest_epoch):06d}.pth')
if self.config['global_rank'] == 0:
print(f'Loading model from {gen_path}...')
dataG = torch.load(gen_path, map_location=self.config['device'])
self.netG.load_state_dict(dataG)
data_opt = torch.load(opt_path, map_location=self.config['device'])
self.optimG.load_state_dict(data_opt['optimG'])
self.scheG.load_state_dict(data_opt['scheG'])
self.epoch = data_opt['epoch']
self.iteration = data_opt['iteration']
else:
if self.config['global_rank'] == 0:
print('Warnning: There is no trained model found.'
'An initialized model will be used.')
def save(self, it):
"""Save parameters every eval_epoch"""
if self.config['global_rank'] == 0:
# configure path
gen_path = os.path.join(self.config['save_dir'],
f'gen_{it:06d}.pth')
opt_path = os.path.join(self.config['save_dir'],
f'opt_{it:06d}.pth')
print(f'\nsaving model to {gen_path} ...')
# remove .module for saving
if isinstance(self.netG, torch.nn.DataParallel) or isinstance(self.netG, DDP):
netG = self.netG.module
else:
netG = self.netG
# save checkpoints
torch.save(netG.state_dict(), gen_path)
torch.save(
{
'epoch': self.epoch,
'iteration': self.iteration,
'optimG': self.optimG.state_dict(),
'scheG': self.scheG.state_dict()
}, opt_path)
latest_path = os.path.join(self.config['save_dir'], 'latest.ckpt')
os.system(f"echo {it:06d} > {latest_path}")
def train(self):
"""training entry"""
pbar = range(int(self.train_args['iterations']))
if self.config['global_rank'] == 0:
pbar = tqdm(pbar,
initial=self.iteration,
dynamic_ncols=True,
smoothing=0.01)
os.makedirs('logs', exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(filename)s[line:%(lineno)d]"
"%(levelname)s %(message)s",
datefmt="%a, %d %b %Y %H:%M:%S",
filename=f"logs/{self.config['save_dir'].split('/')[-1]}.log",
filemode='w')
while True:
self.epoch += 1
self.prefetcher.reset()
if self.config['distributed']:
self.train_sampler.set_epoch(self.epoch)
self._train_epoch(pbar)
if self.iteration > self.train_args['iterations']:
break
print('\nEnd training....')
# def get_edges(self, flows): # fgvc
# # (b, t, 2, H, W)
# b, t, _, h, w = flows.shape
# flows = flows.view(-1, 2, h, w)
# flows_list = flows.permute(0, 2, 3, 1).cpu().numpy()
# edges = []
# for f in list(flows_list):
# flows_gray = (f[:, :, 0] ** 2 + f[:, :, 1] ** 2) ** 0.5
# if flows_gray.max() < 1:
# flows_gray = flows_gray*0
# else:
# flows_gray = flows_gray / flows_gray.max()
# edge = canny(flows_gray, sigma=2, low_threshold=0.1, high_threshold=0.2) # fgvc
# edge = torch.from_numpy(edge).view(1, 1, h, w).float()
# edges.append(edge)
# edges = torch.stack(edges, dim=0).to(self.config['device'])
# edges = edges.view(b, t, 1, h, w)
# return edges
def get_edges(self, flows):
# (b, t, 2, H, W)
b, t, _, h, w = flows.shape
flows = flows.view(-1, 2, h, w)
flows_gray = (flows[:, 0, None] ** 2 + flows[:, 1, None] ** 2) ** 0.5
if flows_gray.max() < 1:
flows_gray = flows_gray*0
else:
flows_gray = flows_gray / flows_gray.max()
magnitude, edges = self.canny(flows_gray.float())
edges = edges.view(b, t, 1, h, w)
return edges
def _train_epoch(self, pbar):
"""Process input and calculate loss every training epoch"""
device = self.config['device']
train_data = self.prefetcher.next()
while train_data is not None:
self.iteration += 1
frames, masks, flows_f, flows_b, _ = train_data
frames, masks = frames.to(device), masks.to(device)
masks = masks.float()
l_t = self.num_local_frames
b, t, c, h, w = frames.size()
gt_local_frames = frames[:, :l_t, ...]
local_masks = masks[:, :l_t, ...].contiguous()
# get gt optical flow
if flows_f[0] == 'None' or flows_b[0] == 'None':
gt_flows_bi = self.fix_raft(gt_local_frames)
else:
gt_flows_bi = (flows_f.to(device), flows_b.to(device))
# get gt edge
gt_edges_forward = self.get_edges(gt_flows_bi[0])
gt_edges_backward = self.get_edges(gt_flows_bi[1])
gt_edges_bi = [gt_edges_forward, gt_edges_backward]
# complete flow
pred_flows_bi, pred_edges_bi = self.netG.module.forward_bidirect_flow(gt_flows_bi, local_masks)
# optimize net_g
self.optimG.zero_grad()
# compulte flow_loss
flow_loss, warp_loss = self.flow_loss(pred_flows_bi, gt_flows_bi, local_masks, gt_local_frames)
flow_loss = flow_loss * self.config['losses']['flow_weight']
warp_loss = warp_loss * 0.01
self.add_summary(self.gen_writer, 'loss/flow_loss', flow_loss.item())
self.add_summary(self.gen_writer, 'loss/warp_loss', warp_loss.item())
# compute edge loss
edge_loss = self.edge_loss(pred_edges_bi, gt_edges_bi, local_masks)
edge_loss = edge_loss*1.0
self.add_summary(self.gen_writer, 'loss/edge_loss', edge_loss.item())
loss = flow_loss + warp_loss + edge_loss
loss.backward()
self.optimG.step()
self.update_learning_rate()
# write image to tensorboard
# if self.iteration % 200 == 0:
if self.iteration % 200 == 0 and self.gen_writer is not None:
t = 5
# forward to cpu
gt_flows_forward_cpu = flow_to_image(gt_flows_bi[0][0]).cpu()
masked_flows_forward_cpu = (gt_flows_forward_cpu[t] * (1-local_masks[0][t].cpu())).to(gt_flows_forward_cpu)
pred_flows_forward_cpu = flow_to_image(pred_flows_bi[0][0]).cpu()
flow_results = torch.cat([gt_flows_forward_cpu[t], masked_flows_forward_cpu, pred_flows_forward_cpu[t]], 1)
self.gen_writer.add_image('img/flow-f:gt-pred', flow_results, self.iteration)
# backward to cpu
gt_flows_backward_cpu = flow_to_image(gt_flows_bi[1][0]).cpu()
masked_flows_backward_cpu = (gt_flows_backward_cpu[t] * (1-local_masks[0][t+1].cpu())).to(gt_flows_backward_cpu)
pred_flows_backward_cpu = flow_to_image(pred_flows_bi[1][0]).cpu()
flow_results = torch.cat([gt_flows_backward_cpu[t], masked_flows_backward_cpu, pred_flows_backward_cpu[t]], 1)
self.gen_writer.add_image('img/flow-b:gt-pred', flow_results, self.iteration)
# TODO: show edge
# forward
gt_edges_forward_cpu = gt_edges_bi[0][0].cpu()
masked_edges_forward_cpu = (gt_edges_forward_cpu[t] * (1-local_masks[0][t].cpu())).to(gt_edges_forward_cpu)
pred_edges_forward_cpu = pred_edges_bi[0][0].cpu()
edge_results = torch.cat([gt_edges_forward_cpu[t], masked_edges_forward_cpu, pred_edges_forward_cpu[t]], 1)
self.gen_writer.add_image('img/edge-f:gt-pred', edge_results, self.iteration)
# backward
gt_edges_backward_cpu = gt_edges_bi[1][0].cpu()
masked_edges_backward_cpu = (gt_edges_backward_cpu[t] * (1-local_masks[0][t+1].cpu())).to(gt_edges_backward_cpu)
pred_edges_backward_cpu = pred_edges_bi[1][0].cpu()
edge_results = torch.cat([gt_edges_backward_cpu[t], masked_edges_backward_cpu, pred_edges_backward_cpu[t]], 1)
self.gen_writer.add_image('img/edge-b:gt-pred', edge_results, self.iteration)
# console logs
if self.config['global_rank'] == 0:
pbar.update(1)
pbar.set_description((f"flow: {flow_loss.item():.3f}; "
f"warp: {warp_loss.item():.3f}; "
f"edge: {edge_loss.item():.3f}; "
f"lr: {self.get_lr()}"))
if self.iteration % self.train_args['log_freq'] == 0:
logging.info(f"[Iter {self.iteration}] "
f"flow: {flow_loss.item():.4f}; "
f"warp: {warp_loss.item():.4f}")
# saving models
if self.iteration % self.train_args['save_freq'] == 0:
self.save(int(self.iteration))
if self.iteration > self.train_args['iterations']:
break
train_data = self.prefetcher.next()