Spaces:
Running
on
L40S
Running
on
L40S
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
from einops import rearrange, repeat | |
from dataclasses import dataclass | |
import copy | |
import torch | |
import torch.nn.functional as F | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, ImageProjection | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
BaseOutput | |
) | |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
UniPCMultistepScheduler, | |
) | |
from libs.unet_2d_condition import UNet2DConditionModel | |
from libs.brushnet_CA import BrushNetModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
`timesteps` must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
def get_frames_context_swap(total_frames=192, overlap=4, num_frames_per_clip=24): | |
if total_frames<num_frames_per_clip: | |
num_frames_per_clip = total_frames | |
context_list = [] | |
context_list_swap = [] | |
for i in range(1, 2): # i=1 | |
sample_interval = np.array(range(0,total_frames,i)) | |
n = len(sample_interval) | |
if n>num_frames_per_clip: | |
## [0,num_frames_per_clip-1], [num_frames_per_clip, 2*num_frames_per_clip-1].... | |
for k in range(0,n-num_frames_per_clip,num_frames_per_clip-overlap): | |
context_list.append(sample_interval[k:k+num_frames_per_clip]) | |
if k+num_frames_per_clip < n and i==1: | |
context_list.append(sample_interval[n-num_frames_per_clip:n]) | |
context_list_swap.append(sample_interval[0:num_frames_per_clip]) | |
for k in range(num_frames_per_clip//2, n-num_frames_per_clip, num_frames_per_clip-overlap): | |
context_list_swap.append(sample_interval[k:k+num_frames_per_clip]) | |
if k+num_frames_per_clip < n and i==1: | |
context_list_swap.append(sample_interval[n-num_frames_per_clip:n]) | |
if n==num_frames_per_clip: | |
context_list.append(sample_interval[n-num_frames_per_clip:n]) | |
context_list_swap.append(sample_interval[n-num_frames_per_clip:n]) | |
return context_list, context_list_swap | |
class DiffuEraserPipelineOutput(BaseOutput): | |
frames: Union[torch.Tensor, np.ndarray] | |
latents: Union[torch.Tensor, np.ndarray] | |
class StableDiffusionDiffuEraserPipeline( | |
DiffusionPipeline, | |
StableDiffusionMixin, | |
TextualInversionLoaderMixin, | |
LoraLoaderMixin, | |
IPAdapterMixin, | |
FromSingleFileMixin, | |
): | |
r""" | |
Pipeline for video inpainting using Video Diffusion Model with BrushNet guidance. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
brushnet ([`BrushNetModel`]`): | |
Provides additional conditioning to the `unet` during the denoising process. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please refer to the [model card](https://huggingface.co./runwayml/stable-diffusion-v1-5) for more details | |
about a model's potential harms. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
""" | |
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | |
_exclude_from_cpu_offload = ["safety_checker"] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
brushnet: BrushNetModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
brushnet=brushnet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
if output_hidden_states: | |
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_enc_hidden_states = self.image_encoder( | |
torch.zeros_like(image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
return image_enc_hidden_states, uncond_image_enc_hidden_states | |
else: | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
def decode_latents(self, latents, weight_dtype): | |
latents = 1 / self.vae.config.scaling_factor * latents | |
video = [] | |
for t in range(latents.shape[0]): | |
video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample) | |
video = torch.concat(video, dim=0) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
video = video.float() | |
return video | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds | |
def prepare_ip_adapter_image_embeds( | |
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | |
): | |
if ip_adapter_image_embeds is None: | |
if not isinstance(ip_adapter_image, list): | |
ip_adapter_image = [ip_adapter_image] | |
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
raise ValueError( | |
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
) | |
image_embeds = [] | |
for single_ip_adapter_image, image_proj_layer in zip( | |
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
): | |
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
single_image_embeds, single_negative_image_embeds = self.encode_image( | |
single_ip_adapter_image, device, 1, output_hidden_state | |
) | |
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | |
single_negative_image_embeds = torch.stack( | |
[single_negative_image_embeds] * num_images_per_prompt, dim=0 | |
) | |
if do_classifier_free_guidance: | |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
single_image_embeds = single_image_embeds.to(device) | |
image_embeds.append(single_image_embeds) | |
else: | |
repeat_dims = [1] | |
image_embeds = [] | |
for single_image_embeds in ip_adapter_image_embeds: | |
if do_classifier_free_guidance: | |
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | |
single_image_embeds = single_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
) | |
single_negative_image_embeds = single_negative_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) | |
) | |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
else: | |
single_image_embeds = single_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
) | |
image_embeds.append(single_image_embeds) | |
return image_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents | |
def decode_latents(self, latents, weight_dtype): | |
latents = 1 / self.vae.config.scaling_factor * latents | |
video = [] | |
for t in range(latents.shape[0]): | |
video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample) | |
video = torch.concat(video, dim=0) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
video = video.float() | |
return video | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
images, | |
masks, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
ip_adapter_image=None, | |
ip_adapter_image_embeds=None, | |
brushnet_conditioning_scale=1.0, | |
control_guidance_start=0.0, | |
control_guidance_end=1.0, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
# Check `image` | |
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
self.brushnet, torch._dynamo.eval_frame.OptimizedModule | |
) | |
if ( | |
isinstance(self.brushnet, BrushNetModel) | |
or is_compiled | |
and isinstance(self.brushnet._orig_mod, BrushNetModel) | |
): | |
self.check_image(images, masks, prompt, prompt_embeds) | |
else: | |
assert False | |
# Check `brushnet_conditioning_scale` | |
if ( | |
isinstance(self.brushnet, BrushNetModel) | |
or is_compiled | |
and isinstance(self.brushnet._orig_mod, BrushNetModel) | |
): | |
if not isinstance(brushnet_conditioning_scale, float): | |
raise TypeError("For single brushnet: `brushnet_conditioning_scale` must be type `float`.") | |
else: | |
assert False | |
if not isinstance(control_guidance_start, (tuple, list)): | |
control_guidance_start = [control_guidance_start] | |
if not isinstance(control_guidance_end, (tuple, list)): | |
control_guidance_end = [control_guidance_end] | |
if len(control_guidance_start) != len(control_guidance_end): | |
raise ValueError( | |
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | |
) | |
for start, end in zip(control_guidance_start, control_guidance_end): | |
if start >= end: | |
raise ValueError( | |
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | |
) | |
if start < 0.0: | |
raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | |
if end > 1.0: | |
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
raise ValueError( | |
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
) | |
if ip_adapter_image_embeds is not None: | |
if not isinstance(ip_adapter_image_embeds, list): | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | |
) | |
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | |
) | |
def check_image(self, images, masks, prompt, prompt_embeds): | |
for image in images: | |
image_is_pil = isinstance(image, PIL.Image.Image) | |
image_is_tensor = isinstance(image, torch.Tensor) | |
image_is_np = isinstance(image, np.ndarray) | |
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
if ( | |
not image_is_pil | |
and not image_is_tensor | |
and not image_is_np | |
and not image_is_pil_list | |
and not image_is_tensor_list | |
and not image_is_np_list | |
): | |
raise TypeError( | |
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
) | |
for mask in masks: | |
mask_is_pil = isinstance(mask, PIL.Image.Image) | |
mask_is_tensor = isinstance(mask, torch.Tensor) | |
mask_is_np = isinstance(mask, np.ndarray) | |
mask_is_pil_list = isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image) | |
mask_is_tensor_list = isinstance(mask, list) and isinstance(mask[0], torch.Tensor) | |
mask_is_np_list = isinstance(mask, list) and isinstance(mask[0], np.ndarray) | |
if ( | |
not mask_is_pil | |
and not mask_is_tensor | |
and not mask_is_np | |
and not mask_is_pil_list | |
and not mask_is_tensor_list | |
and not mask_is_np_list | |
): | |
raise TypeError( | |
f"mask must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(mask)}" | |
) | |
if image_is_pil: | |
image_batch_size = 1 | |
else: | |
image_batch_size = len(image) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
def prepare_image( | |
self, | |
images, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
images_new = [] | |
for image in images: | |
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
# if do_classifier_free_guidance and not guess_mode: | |
# image = torch.cat([image] * 2) | |
images_new.append(image) | |
return images_new | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): | |
# shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
#b,c,n,h,w | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
num_frames, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
# noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
noise = rearrange(randn_tensor(shape, generator=generator, device=device, dtype=dtype), "b c t h w -> (b t) c h w") | |
else: | |
noise = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = noise * self.scheduler.init_noise_sigma | |
return latents, noise | |
def temp_blend(a, b, overlap): | |
factor = torch.arange(overlap).to(b.device).view(overlap, 1, 1, 1) / (overlap - 1) | |
a[:overlap, ...] = (1 - factor) * a[:overlap, ...] + factor * b[:overlap, ...] | |
a[overlap:, ...] = b[overlap:, ...] | |
return a | |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
timesteps (`torch.Tensor`): | |
generate embedding vectors at these timesteps | |
embedding_dim (`int`, *optional*, defaults to 512): | |
dimension of the embeddings to generate | |
dtype: | |
data type of the generated embeddings | |
Returns: | |
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def guidance_scale(self): | |
return self._guidance_scale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
# based on BrushNet: https://github.com/TencentARC/BrushNet/blob/main/src/diffusers/pipelines/brushnet/pipeline_brushnet.py | |
def __call__( | |
self, | |
num_frames: Optional[int] = 24, | |
prompt: Union[str, List[str]] = None, | |
images: PipelineImageInput = None, ##masked images | |
masks: PipelineImageInput = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
brushnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
guess_mode: bool = False, | |
control_guidance_start: Union[float, List[float]] = 0.0, | |
control_guidance_end: Union[float, List[float]] = 1.0, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
The BrushNet branch input condition to provide guidance to the `unet` for generation. | |
mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
The BrushNet branch input condition to provide guidance to the `unet` for generation. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | |
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | |
if `do_classifier_free_guidance` is set to `True`. | |
If not provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
brushnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The outputs of the BrushNet are multiplied by `brushnet_conditioning_scale` before they are added | |
to the residual in the original `unet`. If multiple BrushNets are specified in `init`, you can set | |
the corresponding scale as a list. | |
guess_mode (`bool`, *optional*, defaults to `False`): | |
The BrushNet encoder tries to recognize the content of the input image even if you remove all | |
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. | |
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
The percentage of total steps at which the BrushNet starts applying. | |
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The percentage of total steps at which the BrushNet stops applying. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeine class. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
brushnet = self.brushnet._orig_mod if is_compiled_module(self.brushnet) else self.brushnet | |
# align format for control guidance | |
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
control_guidance_start, control_guidance_end = ( | |
[control_guidance_start], | |
[control_guidance_end], | |
) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
images, | |
masks, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
brushnet_conditioning_scale, | |
control_guidance_start, | |
control_guidance_end, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
global_pool_conditions = ( | |
brushnet.config.global_pool_conditions | |
if isinstance(brushnet, BrushNetModel) | |
else brushnet.nets[0].config.global_pool_conditions | |
) | |
guess_mode = guess_mode or global_pool_conditions | |
video_length = len(images) | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 4. Prepare image | |
if isinstance(brushnet, BrushNetModel): | |
images = self.prepare_image( | |
images=images, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=brushnet.dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
original_masks = self.prepare_image( | |
images=masks, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=brushnet.dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
original_masks_new = [] | |
for original_mask in original_masks: | |
original_mask=(original_mask.sum(1)[:,None,:,:] < 0).to(images[0].dtype) | |
original_masks_new.append(original_mask) | |
original_masks = original_masks_new | |
height, width = images[0].shape[-2:] | |
else: | |
assert False | |
# 5. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
self._num_timesteps = len(timesteps) | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents, noise = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6.1 prepare condition latents | |
images = torch.cat(images) | |
images = images.to(dtype=images[0].dtype) | |
conditioning_latents = [] | |
num=4 | |
for i in range(0, images.shape[0], num): | |
conditioning_latents.append(self.vae.encode(images[i : i + num]).latent_dist.sample()) | |
conditioning_latents = torch.cat(conditioning_latents, dim=0) | |
conditioning_latents = conditioning_latents * self.vae.config.scaling_factor #[(f c h w],c2=4 | |
original_masks = torch.cat(original_masks) | |
masks = torch.nn.functional.interpolate( | |
original_masks, | |
size=( | |
latents.shape[-2], | |
latents.shape[-1] | |
) | |
) ##[ f c h w],c=1 | |
conditioning_latents=torch.concat([conditioning_latents,masks],1) | |
# 6.5 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
else None | |
) | |
# 7.2 Create tensor stating which brushnets to keep | |
brushnet_keep = [] | |
for i in range(len(timesteps)): | |
keeps = [ | |
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
for s, e in zip(control_guidance_start, control_guidance_end) | |
] | |
brushnet_keep.append(keeps[0] if isinstance(brushnet, BrushNetModel) else keeps) | |
overlap = num_frames//4 | |
context_list, context_list_swap = get_frames_context_swap(video_length, overlap=overlap, num_frames_per_clip=num_frames) | |
scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(context_list) | |
scheduler_status_swap = [copy.deepcopy(self.scheduler.__dict__)] * len(context_list_swap) | |
count = torch.zeros_like(latents) | |
value = torch.zeros_like(latents) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
is_unet_compiled = is_compiled_module(self.unet) | |
is_brushnet_compiled = is_compiled_module(self.brushnet) | |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
count.zero_() | |
value.zero_() | |
## swap | |
if (i%2==1): | |
context_list_choose = context_list_swap | |
scheduler_status_choose = scheduler_status_swap | |
else: | |
context_list_choose = context_list | |
scheduler_status_choose = scheduler_status | |
for j, context in enumerate(context_list_choose): | |
self.scheduler.__dict__.update(scheduler_status_choose[j]) | |
latents_j = latents[context, :, :, :] | |
# Relevant thread: | |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
if (is_unet_compiled and is_brushnet_compiled) and is_torch_higher_equal_2_1: | |
torch._inductor.cudagraph_mark_step_begin() | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents_j] * 2) if self.do_classifier_free_guidance else latents_j | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# brushnet(s) inference | |
if guess_mode and self.do_classifier_free_guidance: | |
# Infer BrushNet only for the conditional batch. | |
control_model_input = latents_j | |
control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
brushnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') | |
else: | |
control_model_input = latent_model_input | |
brushnet_prompt_embeds = prompt_embeds | |
if self.do_classifier_free_guidance: | |
neg_brushnet_prompt_embeds, brushnet_prompt_embeds = brushnet_prompt_embeds.chunk(2) | |
brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') | |
neg_brushnet_prompt_embeds = rearrange(repeat(neg_brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') | |
brushnet_prompt_embeds = torch.cat([neg_brushnet_prompt_embeds, brushnet_prompt_embeds]) | |
else: | |
brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') | |
if isinstance(brushnet_keep[i], list): | |
cond_scale = [c * s for c, s in zip(brushnet_conditioning_scale, brushnet_keep[i])] | |
else: | |
brushnet_cond_scale = brushnet_conditioning_scale | |
if isinstance(brushnet_cond_scale, list): | |
brushnet_cond_scale = brushnet_cond_scale[0] | |
cond_scale = brushnet_cond_scale * brushnet_keep[i] | |
down_block_res_samples, mid_block_res_sample, up_block_res_samples = self.brushnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=brushnet_prompt_embeds, | |
brushnet_cond=torch.cat([conditioning_latents[context, :, :, :]]*2) if self.do_classifier_free_guidance else conditioning_latents[context, :, :, :], | |
conditioning_scale=cond_scale, | |
guess_mode=guess_mode, | |
return_dict=False, | |
) | |
if guess_mode and self.do_classifier_free_guidance: | |
# Infered BrushNet only for the conditional batch. | |
# To apply the output of BrushNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
up_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in up_block_res_samples] | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
down_block_add_samples=down_block_res_samples, | |
mid_block_add_sample=mid_block_res_sample, | |
up_block_add_samples=up_block_res_samples, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
num_frames=num_frames, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_j = self.scheduler.step(noise_pred, t, latents_j, **extra_step_kwargs, return_dict=False)[0] | |
count[context, ...] += 1 | |
if j==0: | |
value[context, ...] += latents_j | |
else: | |
overlap_index_list = [index for index, value in enumerate(count[context, 0, 0, 0]) if value > 1] | |
overlap_cur = len(overlap_index_list) | |
ratio_next = torch.linspace(0, 1, overlap_cur+2)[1:-1] | |
ratio_pre = 1-ratio_next | |
for i_overlap in overlap_index_list: | |
value[context[i_overlap], ...] = value[context[i_overlap], ...]*ratio_pre[i_overlap] + latents_j[i_overlap, ...]*ratio_next[i_overlap] | |
value[context[i_overlap:num_frames], ...] = latents_j[i_overlap:num_frames, ...] | |
latents = value.clone() | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# If we do sequential model offloading, let's offload unet and brushnet | |
# manually for max memory savings | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.unet.to("cpu") | |
self.brushnet.to("cpu") | |
torch.cuda.empty_cache() | |
if output_type == "latent": | |
image = latents | |
has_nsfw_concept = None | |
return DiffuEraserPipelineOutput(frames=image, nsfw_content_detected=has_nsfw_concept) | |
video_tensor = self.decode_latents(latents, weight_dtype=prompt_embeds.dtype) | |
if output_type == "pt": | |
video = video_tensor | |
else: | |
video = self.image_processor.postprocess(video_tensor, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video, has_nsfw_concept) | |
return DiffuEraserPipelineOutput(frames=video, latents=latents) | |