Spaces:
Running
on
T4
Running
on
T4
Update language list
#1
by
hysts
HF staff
- opened
- app.py +48 -16
- lang_list.py +254 -0
- mlg_config.json +0 -186
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import json
|
2 |
import os
|
3 |
|
4 |
import gradio as gr
|
@@ -7,11 +6,15 @@ import torch
|
|
7 |
import torchaudio
|
8 |
from seamless_communication.models.inference.translator import Translator
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
lang_idx_map = json.loads(f.read())
|
14 |
-
LANGUAGES = lang_idx_map["multilingual"].keys()
|
15 |
|
16 |
TASK_NAMES = [
|
17 |
"S2ST (Speech to Speech translation)",
|
@@ -24,6 +27,8 @@ TASK_NAMES = [
|
|
24 |
AUDIO_SAMPLE_RATE = 16000.0
|
25 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
26 |
|
|
|
|
|
27 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
28 |
translator = Translator(
|
29 |
model_name_or_card="multitask_unity_large",
|
@@ -43,6 +48,9 @@ def predict(
|
|
43 |
target_language: str,
|
44 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
45 |
task_name = task_name.split()[0]
|
|
|
|
|
|
|
46 |
if task_name in ["S2ST", "S2TT", "ASR"]:
|
47 |
if audio_source == "microphone":
|
48 |
input_data = input_audio_mic
|
@@ -61,8 +69,8 @@ def predict(
|
|
61 |
text_out, wav, sr = translator.predict(
|
62 |
input=input_data,
|
63 |
task_str=task_name,
|
64 |
-
tgt_lang=
|
65 |
-
src_lang=
|
66 |
)
|
67 |
if task_name in ["S2ST", "T2ST"]:
|
68 |
return (sr, wav.cpu().detach().numpy()), text_out
|
@@ -80,26 +88,50 @@ def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
|
80 |
|
81 |
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
82 |
task_name = task_name.split()[0]
|
83 |
-
if task_name
|
84 |
return (
|
85 |
gr.update(visible=True), # audio_box
|
86 |
gr.update(visible=False), # input_text
|
87 |
gr.update(visible=False), # source_language
|
88 |
-
gr.update(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
-
elif task_name
|
91 |
return (
|
92 |
gr.update(visible=False), # audio_box
|
93 |
gr.update(visible=True), # input_text
|
94 |
gr.update(visible=True), # source_language
|
95 |
-
gr.update(
|
|
|
|
|
96 |
)
|
97 |
elif task_name == "ASR":
|
98 |
return (
|
99 |
gr.update(visible=True), # audio_box
|
100 |
gr.update(visible=False), # input_text
|
101 |
gr.update(visible=False), # source_language
|
102 |
-
gr.update(
|
|
|
|
|
103 |
)
|
104 |
else:
|
105 |
raise ValueError(f"Unknown task: {task_name}")
|
@@ -137,14 +169,14 @@ with gr.Blocks(css="style.css") as demo:
|
|
137 |
with gr.Row():
|
138 |
source_language = gr.Dropdown(
|
139 |
label="Source language",
|
140 |
-
choices=
|
141 |
-
value="
|
142 |
visible=False,
|
143 |
)
|
144 |
target_language = gr.Dropdown(
|
145 |
label="Target language",
|
146 |
-
choices=
|
147 |
-
value=
|
148 |
)
|
149 |
with gr.Row() as audio_box:
|
150 |
audio_source = gr.Radio(
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
|
|
6 |
import torchaudio
|
7 |
from seamless_communication.models.inference.translator import Translator
|
8 |
|
9 |
+
from lang_list import (
|
10 |
+
LANGUAGE_NAME_TO_CODE,
|
11 |
+
S2ST_TARGET_LANGUAGE_NAMES,
|
12 |
+
S2TT_TARGET_LANGUAGE_NAMES,
|
13 |
+
T2TT_TARGET_LANGUAGE_NAMES,
|
14 |
+
TEXT_SOURCE_LANGUAGE_NAMES,
|
15 |
+
)
|
16 |
|
17 |
+
DESCRIPTION = "# SeamlessM4T"
|
|
|
|
|
18 |
|
19 |
TASK_NAMES = [
|
20 |
"S2ST (Speech to Speech translation)",
|
|
|
27 |
AUDIO_SAMPLE_RATE = 16000.0
|
28 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
29 |
|
30 |
+
DEFAULT_TARGET_LANGUAGE = "French"
|
31 |
+
|
32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
33 |
translator = Translator(
|
34 |
model_name_or_card="multitask_unity_large",
|
|
|
48 |
target_language: str,
|
49 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
50 |
task_name = task_name.split()[0]
|
51 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
52 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
53 |
+
|
54 |
if task_name in ["S2ST", "S2TT", "ASR"]:
|
55 |
if audio_source == "microphone":
|
56 |
input_data = input_audio_mic
|
|
|
69 |
text_out, wav, sr = translator.predict(
|
70 |
input=input_data,
|
71 |
task_str=task_name,
|
72 |
+
tgt_lang=target_language_code,
|
73 |
+
src_lang=source_language_code,
|
74 |
)
|
75 |
if task_name in ["S2ST", "T2ST"]:
|
76 |
return (sr, wav.cpu().detach().numpy()), text_out
|
|
|
88 |
|
89 |
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
90 |
task_name = task_name.split()[0]
|
91 |
+
if task_name == "S2ST":
|
92 |
return (
|
93 |
gr.update(visible=True), # audio_box
|
94 |
gr.update(visible=False), # input_text
|
95 |
gr.update(visible=False), # source_language
|
96 |
+
gr.update(
|
97 |
+
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
98 |
+
), # target_language
|
99 |
+
)
|
100 |
+
elif task_name == "S2TT":
|
101 |
+
return (
|
102 |
+
gr.update(visible=True), # audio_box
|
103 |
+
gr.update(visible=False), # input_text
|
104 |
+
gr.update(visible=False), # source_language
|
105 |
+
gr.update(
|
106 |
+
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
107 |
+
), # target_language
|
108 |
+
)
|
109 |
+
elif task_name == "T2ST":
|
110 |
+
return (
|
111 |
+
gr.update(visible=False), # audio_box
|
112 |
+
gr.update(visible=True), # input_text
|
113 |
+
gr.update(visible=True), # source_language
|
114 |
+
gr.update(
|
115 |
+
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
116 |
+
), # target_language
|
117 |
)
|
118 |
+
elif task_name == "T2TT":
|
119 |
return (
|
120 |
gr.update(visible=False), # audio_box
|
121 |
gr.update(visible=True), # input_text
|
122 |
gr.update(visible=True), # source_language
|
123 |
+
gr.update(
|
124 |
+
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
125 |
+
), # target_language
|
126 |
)
|
127 |
elif task_name == "ASR":
|
128 |
return (
|
129 |
gr.update(visible=True), # audio_box
|
130 |
gr.update(visible=False), # input_text
|
131 |
gr.update(visible=False), # source_language
|
132 |
+
gr.update(
|
133 |
+
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
134 |
+
), # target_language
|
135 |
)
|
136 |
else:
|
137 |
raise ValueError(f"Unknown task: {task_name}")
|
|
|
169 |
with gr.Row():
|
170 |
source_language = gr.Dropdown(
|
171 |
label="Source language",
|
172 |
+
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
173 |
+
value="English",
|
174 |
visible=False,
|
175 |
)
|
176 |
target_language = gr.Dropdown(
|
177 |
label="Target language",
|
178 |
+
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
179 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
180 |
)
|
181 |
with gr.Row() as audio_box:
|
182 |
audio_source = gr.Radio(
|
lang_list.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Language dict
|
2 |
+
language_code_to_name = {
|
3 |
+
"afr": "Afrikaans",
|
4 |
+
"amh": "Amharic",
|
5 |
+
"arb": "Modern Standard Arabic",
|
6 |
+
"ary": "Moroccan Arabic",
|
7 |
+
"arz": "Egyptian Arabic",
|
8 |
+
"asm": "Assamese",
|
9 |
+
"ast": "Asturian",
|
10 |
+
"azj": "North Azerbaijani",
|
11 |
+
"bel": "Belarusian",
|
12 |
+
"ben": "Bengali",
|
13 |
+
"bos": "Bosnian",
|
14 |
+
"bul": "Bulgarian",
|
15 |
+
"cat": "Catalan",
|
16 |
+
"ceb": "Cebuano",
|
17 |
+
"ces": "Czech",
|
18 |
+
"ckb": "Central Kurdish",
|
19 |
+
"cmn": "Mandarin Chinese",
|
20 |
+
"cym": "Welsh",
|
21 |
+
"dan": "Danish",
|
22 |
+
"deu": "German",
|
23 |
+
"ell": "Greek",
|
24 |
+
"eng": "English",
|
25 |
+
"est": "Estonian",
|
26 |
+
"eus": "Basque",
|
27 |
+
"fin": "Finnish",
|
28 |
+
"fra": "French",
|
29 |
+
"gaz": "West Central Oromo",
|
30 |
+
"gle": "Irish",
|
31 |
+
"glg": "Galician",
|
32 |
+
"guj": "Gujarati",
|
33 |
+
"heb": "Hebrew",
|
34 |
+
"hin": "Hindi",
|
35 |
+
"hrv": "Croatian",
|
36 |
+
"hun": "Hungarian",
|
37 |
+
"hye": "Armenian",
|
38 |
+
"ibo": "Igbo",
|
39 |
+
"ind": "Indonesian",
|
40 |
+
"isl": "Icelandic",
|
41 |
+
"ita": "Italian",
|
42 |
+
"jav": "Javanese",
|
43 |
+
"jpn": "Japanese",
|
44 |
+
"kam": "Kamba",
|
45 |
+
"kan": "Kannada",
|
46 |
+
"kat": "Georgian",
|
47 |
+
"kaz": "Kazakh",
|
48 |
+
"kea": "Kabuverdianu",
|
49 |
+
"khk": "Halh Mongolian",
|
50 |
+
"khm": "Khmer",
|
51 |
+
"kir": "Kyrgyz",
|
52 |
+
"kor": "Korean",
|
53 |
+
"lao": "Lao",
|
54 |
+
"lit": "Lithuanian",
|
55 |
+
"ltz": "Luxembourgish",
|
56 |
+
"lug": "Ganda",
|
57 |
+
"luo": "Luo",
|
58 |
+
"lvs": "Standard Latvian",
|
59 |
+
"mai": "Maithili",
|
60 |
+
"mal": "Malayalam",
|
61 |
+
"mar": "Marathi",
|
62 |
+
"mkd": "Macedonian",
|
63 |
+
"mlt": "Maltese",
|
64 |
+
"mni": "Meitei",
|
65 |
+
"mya": "Burmese",
|
66 |
+
"nld": "Dutch",
|
67 |
+
"nno": "Norwegian Nynorsk",
|
68 |
+
"nob": "Norwegian Bokm\u00e5l",
|
69 |
+
"npi": "Nepali",
|
70 |
+
"nya": "Nyanja",
|
71 |
+
"oci": "Occitan",
|
72 |
+
"ory": "Odia",
|
73 |
+
"pan": "Punjabi",
|
74 |
+
"pbt": "Southern Pashto",
|
75 |
+
"pes": "Western Persian",
|
76 |
+
"pol": "Polish",
|
77 |
+
"por": "Portuguese",
|
78 |
+
"ron": "Romanian",
|
79 |
+
"rus": "Russian",
|
80 |
+
"slk": "Slovak",
|
81 |
+
"slv": "Slovenian",
|
82 |
+
"sna": "Shona",
|
83 |
+
"snd": "Sindhi",
|
84 |
+
"som": "Somali",
|
85 |
+
"spa": "Spanish",
|
86 |
+
"srp": "Serbian",
|
87 |
+
"swe": "Swedish",
|
88 |
+
"swh": "Swahili",
|
89 |
+
"tam": "Tamil",
|
90 |
+
"tel": "Telugu",
|
91 |
+
"tgk": "Tajik",
|
92 |
+
"tgl": "Tagalog",
|
93 |
+
"tha": "Thai",
|
94 |
+
"tur": "Turkish",
|
95 |
+
"ukr": "Ukrainian",
|
96 |
+
"urd": "Urdu",
|
97 |
+
"uzn": "Northern Uzbek",
|
98 |
+
"vie": "Vietnamese",
|
99 |
+
"xho": "Xhosa",
|
100 |
+
"yor": "Yoruba",
|
101 |
+
"yue": "Cantonese",
|
102 |
+
"zlm": "Colloquial Malay",
|
103 |
+
"zsm": "Standard Malay",
|
104 |
+
"zul": "Zulu",
|
105 |
+
}
|
106 |
+
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
107 |
+
|
108 |
+
# Source langs: S2ST / S2TT / ASR don't need source lang
|
109 |
+
# T2TT / T2ST use this
|
110 |
+
text_source_language_codes = [
|
111 |
+
"afr",
|
112 |
+
"amh",
|
113 |
+
"arb",
|
114 |
+
"ary",
|
115 |
+
"arz",
|
116 |
+
"asm",
|
117 |
+
"azj",
|
118 |
+
"bel",
|
119 |
+
"ben",
|
120 |
+
"bos",
|
121 |
+
"bul",
|
122 |
+
"cat",
|
123 |
+
"ceb",
|
124 |
+
"ces",
|
125 |
+
"ckb",
|
126 |
+
"cmn",
|
127 |
+
"cym",
|
128 |
+
"dan",
|
129 |
+
"deu",
|
130 |
+
"ell",
|
131 |
+
"eng",
|
132 |
+
"est",
|
133 |
+
"eus",
|
134 |
+
"fin",
|
135 |
+
"fra",
|
136 |
+
"gaz",
|
137 |
+
"gle",
|
138 |
+
"glg",
|
139 |
+
"guj",
|
140 |
+
"heb",
|
141 |
+
"hin",
|
142 |
+
"hrv",
|
143 |
+
"hun",
|
144 |
+
"hye",
|
145 |
+
"ibo",
|
146 |
+
"ind",
|
147 |
+
"isl",
|
148 |
+
"ita",
|
149 |
+
"jav",
|
150 |
+
"jpn",
|
151 |
+
"kan",
|
152 |
+
"kat",
|
153 |
+
"kaz",
|
154 |
+
"khk",
|
155 |
+
"khm",
|
156 |
+
"kir",
|
157 |
+
"kor",
|
158 |
+
"lao",
|
159 |
+
"lit",
|
160 |
+
"lug",
|
161 |
+
"luo",
|
162 |
+
"lvs",
|
163 |
+
"mai",
|
164 |
+
"mal",
|
165 |
+
"mar",
|
166 |
+
"mkd",
|
167 |
+
"mlt",
|
168 |
+
"mni",
|
169 |
+
"mya",
|
170 |
+
"nld",
|
171 |
+
"nno",
|
172 |
+
"nob",
|
173 |
+
"npi",
|
174 |
+
"nya",
|
175 |
+
"ory",
|
176 |
+
"pan",
|
177 |
+
"pbt",
|
178 |
+
"pes",
|
179 |
+
"pol",
|
180 |
+
"por",
|
181 |
+
"ron",
|
182 |
+
"rus",
|
183 |
+
"slk",
|
184 |
+
"slv",
|
185 |
+
"sna",
|
186 |
+
"snd",
|
187 |
+
"som",
|
188 |
+
"spa",
|
189 |
+
"srp",
|
190 |
+
"swe",
|
191 |
+
"swh",
|
192 |
+
"tam",
|
193 |
+
"tel",
|
194 |
+
"tgk",
|
195 |
+
"tgl",
|
196 |
+
"tha",
|
197 |
+
"tur",
|
198 |
+
"ukr",
|
199 |
+
"urd",
|
200 |
+
"uzn",
|
201 |
+
"vie",
|
202 |
+
"yor",
|
203 |
+
"yue",
|
204 |
+
"zsm",
|
205 |
+
"zul",
|
206 |
+
]
|
207 |
+
TEXT_SOURCE_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in text_source_language_codes])
|
208 |
+
|
209 |
+
# Target langs:
|
210 |
+
# S2ST / T2ST
|
211 |
+
s2st_target_language_codes = [
|
212 |
+
"eng",
|
213 |
+
"arb",
|
214 |
+
"ben",
|
215 |
+
"cat",
|
216 |
+
"ces",
|
217 |
+
"cmn",
|
218 |
+
"cym",
|
219 |
+
"dan",
|
220 |
+
"deu",
|
221 |
+
"est",
|
222 |
+
"fin",
|
223 |
+
"fra",
|
224 |
+
"hin",
|
225 |
+
"ind",
|
226 |
+
"ita",
|
227 |
+
"jpn",
|
228 |
+
"kor",
|
229 |
+
"mlt",
|
230 |
+
"nld",
|
231 |
+
"pes",
|
232 |
+
"pol",
|
233 |
+
"por",
|
234 |
+
"ron",
|
235 |
+
"rus",
|
236 |
+
"slk",
|
237 |
+
"spa",
|
238 |
+
"swe",
|
239 |
+
"swh",
|
240 |
+
"tel",
|
241 |
+
"tgl",
|
242 |
+
"tha",
|
243 |
+
"tur",
|
244 |
+
"ukr",
|
245 |
+
"urd",
|
246 |
+
"uzn",
|
247 |
+
"vie",
|
248 |
+
]
|
249 |
+
S2ST_TARGET_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in s2st_target_language_codes])
|
250 |
+
|
251 |
+
# S2TT / ASR
|
252 |
+
S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
253 |
+
# T2TT
|
254 |
+
T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
mlg_config.json
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"multilingual": {
|
3 |
-
"arb": 0,
|
4 |
-
"ben": 1,
|
5 |
-
"cat": 2,
|
6 |
-
"ces": 3,
|
7 |
-
"cmn": 4,
|
8 |
-
"cym": 5,
|
9 |
-
"dan": 6,
|
10 |
-
"deu": 7,
|
11 |
-
"eng": 8,
|
12 |
-
"est": 9,
|
13 |
-
"fin": 10,
|
14 |
-
"fra": 11,
|
15 |
-
"hin": 12,
|
16 |
-
"ind": 13,
|
17 |
-
"ita": 14,
|
18 |
-
"jpn": 15,
|
19 |
-
"kor": 16,
|
20 |
-
"mlt": 17,
|
21 |
-
"nld": 18,
|
22 |
-
"pes": 19,
|
23 |
-
"pol": 20,
|
24 |
-
"por": 21,
|
25 |
-
"ron": 22,
|
26 |
-
"rus": 23,
|
27 |
-
"slk": 24,
|
28 |
-
"spa": 25,
|
29 |
-
"swe": 26,
|
30 |
-
"swh": 27,
|
31 |
-
"tel": 28,
|
32 |
-
"tgl": 29,
|
33 |
-
"tha": 30,
|
34 |
-
"tur": 31,
|
35 |
-
"ukr": 32,
|
36 |
-
"urd": 33,
|
37 |
-
"uzn": 34,
|
38 |
-
"vie": 35
|
39 |
-
},
|
40 |
-
"multispkr": {
|
41 |
-
"arb": [
|
42 |
-
0
|
43 |
-
],
|
44 |
-
"ben": [
|
45 |
-
2,
|
46 |
-
1
|
47 |
-
],
|
48 |
-
"cat": [
|
49 |
-
3
|
50 |
-
],
|
51 |
-
"ces": [
|
52 |
-
4
|
53 |
-
],
|
54 |
-
"cmn": [
|
55 |
-
5
|
56 |
-
],
|
57 |
-
"cym": [
|
58 |
-
6
|
59 |
-
],
|
60 |
-
"dan": [
|
61 |
-
7,
|
62 |
-
8
|
63 |
-
],
|
64 |
-
"deu": [
|
65 |
-
9
|
66 |
-
],
|
67 |
-
"eng": [
|
68 |
-
10
|
69 |
-
],
|
70 |
-
"est": [
|
71 |
-
11,
|
72 |
-
12,
|
73 |
-
13
|
74 |
-
],
|
75 |
-
"fin": [
|
76 |
-
14
|
77 |
-
],
|
78 |
-
"fra": [
|
79 |
-
15
|
80 |
-
],
|
81 |
-
"hin": [
|
82 |
-
16
|
83 |
-
],
|
84 |
-
"ind": [
|
85 |
-
17,
|
86 |
-
24,
|
87 |
-
18,
|
88 |
-
20,
|
89 |
-
19,
|
90 |
-
21,
|
91 |
-
23,
|
92 |
-
27,
|
93 |
-
26,
|
94 |
-
22,
|
95 |
-
25
|
96 |
-
],
|
97 |
-
"ita": [
|
98 |
-
29,
|
99 |
-
28
|
100 |
-
],
|
101 |
-
"jpn": [
|
102 |
-
30
|
103 |
-
],
|
104 |
-
"kor": [
|
105 |
-
31
|
106 |
-
],
|
107 |
-
"mlt": [
|
108 |
-
32,
|
109 |
-
33,
|
110 |
-
34
|
111 |
-
],
|
112 |
-
"nld": [
|
113 |
-
35
|
114 |
-
],
|
115 |
-
"pes": [
|
116 |
-
36
|
117 |
-
],
|
118 |
-
"pol": [
|
119 |
-
37
|
120 |
-
],
|
121 |
-
"por": [
|
122 |
-
38
|
123 |
-
],
|
124 |
-
"ron": [
|
125 |
-
39
|
126 |
-
],
|
127 |
-
"rus": [
|
128 |
-
40
|
129 |
-
],
|
130 |
-
"slk": [
|
131 |
-
41
|
132 |
-
],
|
133 |
-
"spa": [
|
134 |
-
42
|
135 |
-
],
|
136 |
-
"swe": [
|
137 |
-
43,
|
138 |
-
45,
|
139 |
-
44
|
140 |
-
],
|
141 |
-
"swh": [
|
142 |
-
46,
|
143 |
-
48,
|
144 |
-
47
|
145 |
-
],
|
146 |
-
"tel": [
|
147 |
-
49
|
148 |
-
],
|
149 |
-
"tgl": [
|
150 |
-
50
|
151 |
-
],
|
152 |
-
"tha": [
|
153 |
-
51,
|
154 |
-
54,
|
155 |
-
55,
|
156 |
-
52,
|
157 |
-
53
|
158 |
-
],
|
159 |
-
"tur": [
|
160 |
-
58,
|
161 |
-
57,
|
162 |
-
56
|
163 |
-
],
|
164 |
-
"ukr": [
|
165 |
-
59
|
166 |
-
],
|
167 |
-
"urd": [
|
168 |
-
60,
|
169 |
-
61,
|
170 |
-
62
|
171 |
-
],
|
172 |
-
"uzn": [
|
173 |
-
63,
|
174 |
-
64,
|
175 |
-
65
|
176 |
-
],
|
177 |
-
"vie": [
|
178 |
-
66,
|
179 |
-
67,
|
180 |
-
70,
|
181 |
-
71,
|
182 |
-
68,
|
183 |
-
69
|
184 |
-
]
|
185 |
-
}
|
186 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|