File size: 5,992 Bytes
d7d385a
f4fd69a
 
 
 
 
 
 
 
1374617
 
19d9ad5
c07a7cd
1374617
6b18013
 
 
1374617
51bcb84
8aba0b4
6b18013
7ff74b6
e9a4eb9
 
a175a94
142f4f4
1374617
f4fd69a
1374617
 
f4fd69a
1f57e6f
6b18013
 
 
1374617
 
6b18013
1374617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f57e6f
1374617
 
 
 
 
 
1f57e6f
 
f4fd69a
 
 
 
 
 
 
 
6b18013
f4fd69a
1374617
f4fd69a
 
 
6b18013
f4fd69a
 
 
 
 
6b18013
f4fd69a
 
 
 
 
 
 
 
 
 
 
 
 
 
6b18013
 
1374617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d9ad5
d52da14
f4fd69a
 
 
 
 
 
 
 
1374617
 
19d9ad5
 
7ff74b6
bfe04df
f4fd69a
1374617
f4fd69a
 
 
1374617
f4fd69a
 
 
 
1374617
6b18013
 
1374617
f4fd69a
 
 
 
 
 
6b18013
f4fd69a
1374617
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import os
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer, ConversationalPipeline

####CREDIT#####
# Credit to author (Sri Laxmi) of original code reference: SriLaxmi1993
# Sri LaxmiGithub Link: https://github.com/SriLaxmi1993/Document-Genie-using-RAG-Framwork
# Sri Laxmi Youtube:https://www.youtube.com/watch?v=SkY2u4UUr6M&t=112s
###############
os.system("pip install -r requirements.txt")

# some model

#tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
#model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")


st.set_page_config(page_title="Gemini RAG", layout="wide")

# This is the first API key input; no need to repeat it in the main function.
api_key = 'AIzaSyCvXRggpO2yNwIpZmoMy_5Xhm2bDyD-pOo'


# os.mkdir('faiss_index')

# empty faise_index and chat_history.json
def delete_files_in_folder(folder_path):
    try:
        # Iterate over all the files in the folder
        chat_history_file = "chat_history.json"
        if os.path.exists(chat_history_file):
            os.remove(chat_history_file)
        for file_name in os.listdir(folder_path):
            file_path = os.path.join(folder_path, file_name)
            if os.path.isfile(file_path):  # Check if it's a file
                os.remove(file_path)  # Delete the file
                print(f"Deleted file: {file_path}")
        print("All files within the folder have been deleted successfully!")
    except Exception as e:
        print(f"An error occurred: {e}")


with st.sidebar:
    st.title("Menu:")

    if st.button("Reset Files", key="reset_button"):
        folder_path = 'faiss_index'
        delete_files_in_folder(folder_path)

    CH_size = st.slider("Chunk Size", 0, 1000, 450)
    CH_overlap = st.slider("Chunk Overlap", 0, 1000, 50)


def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=CH_size, chunk_overlap=CH_overlap)
    chunks = text_splitter.split_text(text)
    return chunks


def get_vector_store(text_chunks, api_key):
    embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
    vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
    vector_store.save_local("faiss_index")


def get_conversational_chain():
    prompt_template = """
    Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
    provided context just say, "answer is not available in the context", don't provide the wrong answer. When giving an answer, try to include all mentionings of the subject being asked and include this within your response\n\n
    Context:\n {context}?\n
    Question: \n{question}\n

    Answer:
    """
    model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.2, google_api_key=api_key)
    prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
    chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
    return chain


# chat history functionality
def update_chat_history(question, reply):
    # Check if chat history file exists
    chat_history_file = "chat_history.json"
    if os.path.exists(chat_history_file):
        # If file exists, load existing chat history
        with open(chat_history_file, "r") as file:
            chat_history = json.load(file)
    else:
        # If file doesn't exist, initialize chat history
        chat_history = {"conversations": []}

    # Add current conversation to chat history
    chat_history["conversations"].append({"question": question, "reply": reply})

    # Write updated chat history back to file
    with open(chat_history_file, "w") as file:
        json.dump(chat_history, file, indent=4)
        # Display chat history
    st.subheader("Chat History")
    for conversation in chat_history["conversations"]:
        st.write(f"**Question:** {conversation['question']}")
        st.write(f"**Reply:** {conversation['reply']}")
        st.write("---")



def user_input(user_question, api_key):
    embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
    new_db = FAISS.load_local("faiss_index", embeddings)
    docs = new_db.similarity_search(user_question)
    chain = get_conversational_chain()
    response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
    st.write("Reply: ", response["output_text"])

    #chat history
    update_chat_history(user_question, response["output_text"])




def main():
    st.header("RAG based LLM Application")

    user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")

    if user_question and api_key:
        user_input(user_question, api_key)

    with st.sidebar:
        st.title("Menu:")

        pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button",
                                    accept_multiple_files=True, key="pdf_uploader")
        if st.button("Submit & Process", key="process_button") and api_key:
            with st.spinner("Processing..."):
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                get_vector_store(text_chunks, api_key)
                st.success("Done")


if __name__ == "__main__":
    main()