evanperez commited on
Commit
1374617
·
verified ·
1 Parent(s): f29907a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -16
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import streamlit as st
2
-
3
  from PyPDF2 import PdfReader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
@@ -8,24 +7,49 @@ from langchain.vectorstores import FAISS
8
  from langchain_google_genai import ChatGoogleGenerativeAI
9
  from langchain.chains.question_answering import load_qa_chain
10
  from langchain.prompts import PromptTemplate
11
- import os
 
12
 
13
- st.set_page_config(page_title="RAG Demo - Evan Perez", layout ="wide")
 
 
 
 
14
 
15
- api_key = 'AIzaSyCvXRggpO2yNwIpZmoMy_5Xhm2bDyD-pOo'
16
 
 
 
17
 
18
  #os.mkdir('faiss_index')
19
 
20
- import subprocess
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- # Read requirements.txt file
23
- with open('requirements.txt', 'r') as f:
24
- packages = f.read().splitlines()
 
 
 
25
 
26
- # Install packages
27
- for package in packages:
28
- subprocess.call(['pip', 'install', package])
29
 
30
  def get_pdf_text(pdf_docs):
31
  text = ""
@@ -36,7 +60,7 @@ def get_pdf_text(pdf_docs):
36
  return text
37
 
38
  def get_text_chunks(text):
39
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
40
  chunks = text_splitter.split_text(text)
41
  return chunks
42
 
@@ -59,6 +83,31 @@ def get_conversational_chain():
59
  chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
60
  return chain
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  def user_input(user_question, api_key):
63
  embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
64
  new_db = FAISS.load_local("faiss_index", embeddings)
@@ -67,18 +116,23 @@ def user_input(user_question, api_key):
67
  response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
68
  st.write("Reply: ", response["output_text"])
69
 
 
 
 
 
70
  def main():
71
- st.header("RAG based LLM Applicatoin")
72
 
73
  user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
74
 
75
- if user_question and api_key: # Ensure API key and user question are provided
76
  user_input(user_question, api_key)
77
 
78
  with st.sidebar:
79
  st.title("Menu:")
 
80
  pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
81
- if st.button("Submit & Process", key="process_button") and api_key: # Check if API key is provided before processing
82
  with st.spinner("Processing..."):
83
  raw_text = get_pdf_text(pdf_docs)
84
  text_chunks = get_text_chunks(raw_text)
@@ -86,4 +140,4 @@ def main():
86
  st.success("Done")
87
 
88
  if __name__ == "__main__":
89
- main()
 
1
  import streamlit as st
 
2
  from PyPDF2 import PdfReader
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
 
7
  from langchain_google_genai import ChatGoogleGenerativeAI
8
  from langchain.chains.question_answering import load_qa_chain
9
  from langchain.prompts import PromptTemplate
10
+ import os
11
+ import json
12
 
13
+ ####CREDIT#####
14
+ #Credit to author (Sri Laxmi) of oringal code reference: SriLaxmi1993
15
+ #Sri LaxmiGithub Link: https://github.com/SriLaxmi1993/Document-Genie-using-RAG-Framwork
16
+ #Sri Laxmi Youtube:https://www.youtube.com/watch?v=SkY2u4UUr6M&t=112s
17
+ ###############
18
 
19
+ st.set_page_config(page_title="Gemini RAG", layout="wide")
20
 
21
+ # This is the first API key input; no need to repeat it in the main function.
22
+ api_key = 'AIzaSyCvXRggpO2yNwIpZmoMy_5Xhm2bDyD-pOo'
23
 
24
  #os.mkdir('faiss_index')
25
 
26
+ #empty faise_index and chat_history.json
27
+ def delete_files_in_folder(folder_path):
28
+ try:
29
+ # Iterate over all the files in the folder
30
+ chat_history_file = "chat_history.json"
31
+ if os.path.exists(chat_history_file):
32
+ os.remove(chat_history_file)
33
+ for file_name in os.listdir(folder_path):
34
+ file_path = os.path.join(folder_path, file_name)
35
+ if os.path.isfile(file_path): # Check if it's a file
36
+ os.remove(file_path) # Delete the file
37
+ print(f"Deleted file: {file_path}")
38
+ print("All files within the folder have been deleted successfully!")
39
+ except Exception as e:
40
+ print(f"An error occurred: {e}")
41
+
42
+
43
+ with st.sidebar:
44
+ st.title("Menu:")
45
 
46
+ if st.button("Reset Files", key="reset_button"):
47
+ folder_path = 'faiss_index'
48
+ delete_files_in_folder(folder_path)
49
+
50
+ CH_size = st.slider("Chunk Size", 0, 1000, 450)
51
+ CH_overlap = st.slider("Chunk Overlap", 0, 1000, 50)
52
 
 
 
 
53
 
54
  def get_pdf_text(pdf_docs):
55
  text = ""
 
60
  return text
61
 
62
  def get_text_chunks(text):
63
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=CH_size, chunk_overlap=CH_overlap)
64
  chunks = text_splitter.split_text(text)
65
  return chunks
66
 
 
83
  chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
84
  return chain
85
 
86
+ #chat history functionality
87
+ def update_chat_history(question, reply):
88
+ # Check if chat history file exists
89
+ chat_history_file = "chat_history.json"
90
+ if os.path.exists(chat_history_file):
91
+ # If file exists, load existing chat history
92
+ with open(chat_history_file, "r") as file:
93
+ chat_history = json.load(file)
94
+ else:
95
+ # If file doesn't exist, initialize chat history
96
+ chat_history = {"conversations": []}
97
+
98
+ # Add current conversation to chat history
99
+ chat_history["conversations"].append({"question": question, "reply": reply})
100
+
101
+ # Write updated chat history back to file
102
+ with open(chat_history_file, "w") as file:
103
+ json.dump(chat_history, file, indent=4)
104
+ # Display chat history
105
+ st.subheader("Chat History")
106
+ for conversation in chat_history["conversations"]:
107
+ st.write(f"**Question:** {conversation['question']}")
108
+ st.write(f"**Reply:** {conversation['reply']}")
109
+ st.write("---")
110
+
111
  def user_input(user_question, api_key):
112
  embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
113
  new_db = FAISS.load_local("faiss_index", embeddings)
 
116
  response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
117
  st.write("Reply: ", response["output_text"])
118
 
119
+ #chat history
120
+ update_chat_history(user_question, response["output_text"])
121
+
122
+
123
  def main():
124
+ st.header("RAG based LLM Application")
125
 
126
  user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
127
 
128
+ if user_question and api_key:
129
  user_input(user_question, api_key)
130
 
131
  with st.sidebar:
132
  st.title("Menu:")
133
+
134
  pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
135
+ if st.button("Submit & Process", key="process_button") and api_key:
136
  with st.spinner("Processing..."):
137
  raw_text = get_pdf_text(pdf_docs)
138
  text_chunks = get_text_chunks(raw_text)
 
140
  st.success("Done")
141
 
142
  if __name__ == "__main__":
143
+ main()