Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
def translate(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
return outputs["text"] | |
''' | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
# load text-to-speech checkpoint and speaker embeddings | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
def synthesise_old(text): | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return speech.cpu() | |
def speech_to_speech_translation_old(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise_old(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
''' | |
from transformers import VitsModel, VitsTokenizer | |
# load translator to french | |
en_fr_translator = pipeline("translation_en_to_fr") | |
# load text-to-speech | |
model_new = VitsModel.from_pretrained("facebook/mms-tts-fra") | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") | |
def synthesise(text): | |
translation_to_french = en_fr_translator(text) | |
french_text = translation_to_french[0]['translation_text'] | |
inputs = tokenizer(french_text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model_new(input_ids) | |
speech = outputs["waveform"] | |
return speech | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech[0].numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. | |
Demo uses OpenAI's [Whisper Base](https://huggingface.co./openai/whisper-base) model for speech translation, | |
Google's [T5](https://huggingface.co./t5-base) for translating from English to French | |
and Facebook's [Massive Multilingual Speech (MMS)](https://huggingface.co./facebook/mms-tts) model for text-to-speech: | |
![Cascaded STST](https://huggingface.co./datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
api_name='predict', | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
api_name='predict_upload', | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.queue() | |
demo.launch() | |