Spaces:
Runtime error
Runtime error
File size: 3,750 Bytes
d347764 65ecf8c d347764 bd9c34f d347764 bd9c34f d347764 617d0d1 2fbbc0b 617d0d1 bd9c34f 617d0d1 bd9c34f 617d0d1 2fbbc0b bd9c34f 617d0d1 d347764 bd9c34f d347764 f805e49 617d0d1 f805e49 c737803 d347764 226ec3a d347764 f805e49 5704381 d347764 c737803 5704381 c737803 3946ba6 c737803 c440523 d2abf2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
return outputs["text"]
'''
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def synthesise_old(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation_old(audio):
translated_text = translate(audio)
synthesised_speech = synthesise_old(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
'''
from transformers import VitsModel, VitsTokenizer
# load translator to french
en_fr_translator = pipeline("translation_en_to_fr")
# load text-to-speech
model_new = VitsModel.from_pretrained("facebook/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
def synthesise(text):
translation_to_french = en_fr_translator(text)
french_text = translation_to_french[0]['translation_text']
inputs = tokenizer(french_text, return_tensors="pt")
input_ids = inputs["input_ids"]
with torch.no_grad():
outputs = model_new(input_ids)
speech = outputs["waveform"]
return speech
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech[0].numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French.
Demo uses OpenAI's [Whisper Base](https://huggingface.co./openai/whisper-base) model for speech translation,
Google's [T5](https://huggingface.co./t5-base) for translating from English to French
and Facebook's [Massive Multilingual Speech (MMS)](https://huggingface.co./facebook/mms-tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co./datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
api_name='predict',
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
api_name='predict_upload',
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.queue()
demo.launch()
|