Spaces:
Runtime error
Runtime error
Update app.py
Browse filesAdded translation to french and a french speech synthetizer.
app.py
CHANGED
@@ -5,31 +5,52 @@ from datasets import load_dataset
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
-
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
-
|
23 |
-
|
24 |
def translate(audio):
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def synthesise(text):
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
@@ -41,8 +62,10 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
-
[
|
|
|
|
|
46 |
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
|
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
+
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def translate(audio):
|
15 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
16 |
return outputs["text"]
|
17 |
|
18 |
|
19 |
+
# load translator to french
|
20 |
+
en_fr_translator = pipeline("translation_en_to_fr")
|
21 |
+
|
22 |
+
|
23 |
+
# load text-to-speech
|
24 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
|
25 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
|
26 |
+
|
27 |
def synthesise(text):
|
28 |
+
translation_to_french = en_fr_translator(text)
|
29 |
+
french_text = translation_to_french[0]['translation_text']
|
30 |
+
|
31 |
+
inputs = tokenizer(french_text, return_tensors="pt")
|
32 |
+
input_ids = inputs["input_ids"]
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model(input_ids)
|
36 |
+
|
37 |
+
speech = outputs["waveform"]
|
38 |
+
return speech
|
39 |
+
|
40 |
+
|
41 |
+
# load text-to-speech checkpoint and speaker embeddings
|
42 |
+
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
43 |
+
|
44 |
+
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
45 |
+
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
46 |
+
|
47 |
+
#embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
48 |
+
#speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
49 |
+
|
50 |
+
#def synthesise(text):
|
51 |
+
# inputs = processor(text=text, return_tensors="pt")
|
52 |
+
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
53 |
+
# return speech.cpu()
|
54 |
|
55 |
|
56 |
def speech_to_speech_translation(audio):
|
|
|
62 |
|
63 |
title = "Cascaded STST"
|
64 |
description = """
|
65 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French.
|
66 |
+
Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation,
|
67 |
+
Google's [T5](https://huggingface.co/t5-base) for translating from English to French
|
68 |
+
and Facebook's [Massive Multilingual Speech (MMS)](https://huggingface.co/facebook/mms-tts) model for text-to-speech:
|
69 |
|
70 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
71 |
"""
|