ercaronte commited on
Commit
617d0d1
1 Parent(s): dbfdf1a

Update app.py

Browse files

Added translation to french and a french speech synthetizer.

Files changed (1) hide show
  1. app.py +39 -16
app.py CHANGED
@@ -5,31 +5,52 @@ from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
-
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
-
23
-
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
 
 
 
 
 
 
 
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
@@ -41,8 +62,10 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
 
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
 
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
+
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
 
 
 
 
 
 
 
 
 
 
14
  def translate(audio):
15
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
16
  return outputs["text"]
17
 
18
 
19
+ # load translator to french
20
+ en_fr_translator = pipeline("translation_en_to_fr")
21
+
22
+
23
+ # load text-to-speech
24
+ model = VitsModel.from_pretrained("facebook/mms-tts-fra")
25
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
26
+
27
  def synthesise(text):
28
+ translation_to_french = en_fr_translator(text)
29
+ french_text = translation_to_french[0]['translation_text']
30
+
31
+ inputs = tokenizer(french_text, return_tensors="pt")
32
+ input_ids = inputs["input_ids"]
33
+
34
+ with torch.no_grad():
35
+ outputs = model(input_ids)
36
+
37
+ speech = outputs["waveform"]
38
+ return speech
39
+
40
+
41
+ # load text-to-speech checkpoint and speaker embeddings
42
+ #processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
43
+
44
+ #model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
45
+ #vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
46
+
47
+ #embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
48
+ #speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
49
+
50
+ #def synthesise(text):
51
+ # inputs = processor(text=text, return_tensors="pt")
52
+ # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
53
+ # return speech.cpu()
54
 
55
 
56
  def speech_to_speech_translation(audio):
 
62
 
63
  title = "Cascaded STST"
64
  description = """
65
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French.
66
+ Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation,
67
+ Google's [T5](https://huggingface.co/t5-base) for translating from English to French
68
+ and Facebook's [Massive Multilingual Speech (MMS)](https://huggingface.co/facebook/mms-tts) model for text-to-speech:
69
 
70
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
71
  """