|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
import random |
|
from matplotlib.ticker import MaxNLocator |
|
from transformers import pipeline |
|
|
|
|
|
MODEL_NAMES = [ |
|
"bert-base-uncased", |
|
"roberta-base", |
|
"bert-large-uncased", |
|
"roberta-large", |
|
] |
|
OWN_MODEL_NAME = "add-a-model" |
|
|
|
DECIMAL_PLACES = 1 |
|
EPS = 1e-5 |
|
|
|
|
|
|
|
models = dict() |
|
|
|
for bert_like in MODEL_NAMES: |
|
models[bert_like] = pipeline("fill-mask", model=bert_like) |
|
|
|
|
|
|
|
def clean_tokens(tokens): |
|
return [token.strip() for token in tokens] |
|
|
|
|
|
def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key): |
|
text_w_masks_list = [ |
|
mask_token if word.lower() in gendered_tokens else word |
|
for word in input_text.split() |
|
] |
|
num_masks = len([m for m in text_w_masks_list if m == mask_token]) |
|
|
|
text_portions = " ".join(text_w_masks_list).split(split_key) |
|
return text_portions, num_masks |
|
|
|
|
|
def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds): |
|
pronoun_preds = [ |
|
sum( |
|
[ |
|
pronoun["score"] |
|
if pronoun["token_str"].strip().lower() in gendered_token |
|
else 0.0 |
|
for pronoun in top_preds |
|
] |
|
) |
|
for top_preds in mask_filled_text |
|
] |
|
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES) |
|
|
|
|
|
|
|
|
|
def get_figure(df, gender, n_fit=1): |
|
df = df.set_index("x-axis") |
|
cols = df.columns |
|
xs = list(range(len(df))) |
|
ys = df[cols[0]] |
|
fig, ax = plt.subplots() |
|
|
|
fig.set_figheight(3) |
|
fig.set_figwidth(9) |
|
|
|
|
|
p, C_p = np.polyfit(xs, ys, n_fit, cov=1) |
|
t = np.linspace(min(xs)-1, max(xs)+1, 10*len(xs)) |
|
TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T |
|
|
|
|
|
yi = np.dot(TT, p) |
|
C_yi = np.dot(TT, np.dot(C_p, TT.T)) |
|
sig_yi = np.sqrt(np.diag(C_yi)) |
|
|
|
ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25) |
|
ax.plot(t, yi, '-') |
|
ax.plot(df, "ro") |
|
ax.legend(list(df.columns)) |
|
|
|
ax.axis("tight") |
|
ax.set_xlabel("Value injected into input text") |
|
ax.set_title(f"Probability of predicting {gender} tokens.") |
|
ax.set_ylabel(f"Softmax prob") |
|
ax.tick_params(axis="x", labelrotation=5) |
|
ax.set_ylim(0, 100) |
|
return fig |
|
|
|
|
|
|
|
|
|
def predict_masked_tokens( |
|
model_name, |
|
own_model_name, |
|
group_a_tokens, |
|
group_b_tokens, |
|
indie_vars, |
|
split_key, |
|
normalizing, |
|
n_fit, |
|
input_text, |
|
): |
|
"""Run inference on input_text for each model type, returning df and plots of percentage |
|
of gender pronouns predicted as female and male in each target text. |
|
""" |
|
if model_name not in MODEL_NAMES: |
|
model = pipeline("fill-mask", model=own_model_name) |
|
else: |
|
model = models[model_name] |
|
|
|
mask_token = model.tokenizer.mask_token |
|
|
|
indie_vars_list = indie_vars.split(",") |
|
|
|
group_a_tokens = clean_tokens(group_a_tokens.split(",")) |
|
group_b_tokens = clean_tokens(group_b_tokens.split(",")) |
|
|
|
text_segments, num_preds = prepare_text_for_masking( |
|
input_text, mask_token, group_b_tokens + group_a_tokens, split_key |
|
) |
|
|
|
male_pronoun_preds = [] |
|
female_pronoun_preds = [] |
|
for indie_var in indie_vars_list: |
|
target_text = f"{indie_var}".join(text_segments) |
|
mask_filled_text = model(target_text) |
|
|
|
if type(mask_filled_text[0]) is not list: |
|
mask_filled_text = [mask_filled_text] |
|
|
|
female_pronoun_preds.append( |
|
get_avg_prob_from_pipeline_outputs( |
|
mask_filled_text, group_a_tokens, num_preds |
|
) |
|
) |
|
male_pronoun_preds.append( |
|
get_avg_prob_from_pipeline_outputs( |
|
mask_filled_text, group_b_tokens, num_preds |
|
) |
|
) |
|
|
|
if normalizing: |
|
total_gendered_probs = np.add(female_pronoun_preds, male_pronoun_preds) |
|
female_pronoun_preds = np.around( |
|
np.divide(female_pronoun_preds, total_gendered_probs + EPS) * 100, |
|
decimals=DECIMAL_PLACES, |
|
) |
|
male_pronoun_preds = np.around( |
|
np.divide(male_pronoun_preds, total_gendered_probs + EPS) * 100, |
|
decimals=DECIMAL_PLACES, |
|
) |
|
|
|
results_df = pd.DataFrame({"x-axis": indie_vars_list}) |
|
results_df["group_a"] = female_pronoun_preds |
|
results_df["group_b"] = male_pronoun_preds |
|
female_fig = get_figure( |
|
results_df.drop("group_b", axis=1), |
|
"group_a", |
|
n_fit, |
|
) |
|
male_fig = get_figure( |
|
results_df.drop("group_a", axis=1), |
|
"group_b", |
|
n_fit, |
|
) |
|
display_text = f"{random.choice(indie_vars_list)}".join(text_segments) |
|
|
|
return ( |
|
display_text, |
|
female_fig, |
|
male_fig, |
|
results_df, |
|
) |
|
|
|
|
|
truck_fn_example = [ |
|
MODEL_NAMES[2], |
|
'', |
|
', '.join(['truck', 'pickup']), |
|
', '.join(['car', 'sedan']), |
|
', '.join(['city','neighborhood','farm']), |
|
'PLACE', |
|
"True", |
|
1, |
|
] |
|
def truck_1_fn(): |
|
return truck_fn_example + [ |
|
'He loaded up his truck and drove to the PLACE.' |
|
] |
|
|
|
def truck_2_fn(): |
|
return truck_fn_example + [ |
|
'He loaded up the bed of his truck and drove to the PLACE.' |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Blocks() |
|
with demo: |
|
gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs") |
|
|
|
|
|
gr.Markdown("## Instructions for this Demo") |
|
gr.Markdown( |
|
"1) Click on one of the examples below to pre-populate the input fields." |
|
) |
|
gr.Markdown( |
|
"2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!" |
|
) |
|
gr.Markdown( |
|
"3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!" |
|
) |
|
|
|
|
|
gr.Markdown("""The pre-populated inputs below are for a demo example of a location-vs-vehicle-type spurious correlation. |
|
We can see this spurious correlation largely disappears in the well-specified example text. |
|
|
|
<p align="center"> |
|
<img src="file/non_well_spec.png" alt="results" width="300"/> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<img src="file/well_spec.png" alt="results" width="300"/> |
|
</p> |
|
""") |
|
|
|
gr.Markdown("## Example inputs") |
|
gr.Markdown( |
|
"Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions." |
|
) |
|
with gr.Row(): |
|
truck_1_gen = gr.Button("Click for non-well-specified(?) vehicle-type example inputs") |
|
gr.Markdown("<-- Multiple solutions with low training error. LLM sensitive to spurious(?) correlations.") |
|
|
|
truck_2_gen = gr.Button("Click for well-specified vehicle-type example inputs") |
|
gr.Markdown("<-- Fewer solutions with low training error. LLM less sensitive to spurious(?) correlations.") |
|
|
|
gr.Markdown("## Input fields") |
|
gr.Markdown( |
|
f"A) Pick a spectrum of comma separated values for text injection and x-axis." |
|
) |
|
|
|
with gr.Row(): |
|
group_a_tokens = gr.Textbox( |
|
type="text", |
|
lines=3, |
|
label="A) To-MASK tokens A: Comma separated words that account for accumulated group A softmax probs", |
|
) |
|
|
|
group_b_tokens = gr.Textbox( |
|
type="text", |
|
lines=3, |
|
label="B) To-MASK tokens B: Comma separated words that account for accumulated group B softmax probs", |
|
) |
|
|
|
with gr.Row(): |
|
x_axis = gr.Textbox( |
|
type="text", |
|
lines=3, |
|
label="C) Comma separated values for text injection and x-axis", |
|
) |
|
|
|
gr.Markdown("D) Pick a pre-loaded BERT-family model of interest on the right.") |
|
gr.Markdown( |
|
f"Or E) select `{OWN_MODEL_NAME}`, then add the mame of any other Hugging Face model that supports the [fill-mask](https://huggingface.co./models?pipeline_tag=fill-mask) task on the right (note: this may take some time to load)." |
|
) |
|
|
|
with gr.Row(): |
|
model_name = gr.Radio( |
|
MODEL_NAMES + [OWN_MODEL_NAME], |
|
type="value", |
|
label="D) BERT-like model.", |
|
) |
|
own_model_name = gr.Textbox( |
|
label="E) If you selected an 'add-a-model' model, put any Hugging Face pipeline model name (that supports the fill-mask task) here.", |
|
) |
|
|
|
gr.Markdown( |
|
"F) Pick if you want to the predictions normalied to only those from group A or B." |
|
) |
|
gr.Markdown( |
|
"G) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above." |
|
) |
|
gr.Markdown( |
|
"And H) the degree of polynomial fit used for high-lighting potential spurious association." |
|
) |
|
|
|
with gr.Row(): |
|
to_normalize = gr.Dropdown( |
|
["False", "True"], |
|
label="D) Normalize model's predictions?", |
|
type="index", |
|
) |
|
place_holder = gr.Textbox( |
|
label="E) Special token place-holder", |
|
) |
|
n_fit = gr.Dropdown( |
|
list(range(1, 5)), |
|
label="F) Degree of polynomial fit", |
|
type="value", |
|
) |
|
|
|
gr.Markdown( |
|
"I) Finally, add input text that includes at least one of the '`To-MASK`' tokens from (A) or (B) and one place-holder token from (G)." |
|
) |
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox( |
|
lines=2, |
|
label="I) Input text with a '`To-MASK`' and place-holder token", |
|
) |
|
|
|
gr.Markdown("## Outputs!") |
|
with gr.Row(): |
|
btn = gr.Button("Hit submit to generate predictions!") |
|
|
|
with gr.Row(): |
|
sample_text = gr.Textbox( |
|
type="text", label="Output text: Sample of text fed to model" |
|
) |
|
with gr.Row(): |
|
female_fig = gr.Plot(type="auto") |
|
male_fig = gr.Plot(type="auto") |
|
with gr.Row(): |
|
df = gr.Dataframe( |
|
show_label=True, |
|
overflow_row_behaviour="show_ends", |
|
label="Table of softmax probability for grouped predictions", |
|
) |
|
|
|
with gr.Row(): |
|
truck_1_gen.click(truck_1_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens, |
|
x_axis, place_holder, to_normalize, n_fit, input_text]) |
|
|
|
truck_2_gen.click(truck_2_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens, |
|
x_axis, place_holder, to_normalize, n_fit, input_text]) |
|
|
|
btn.click( |
|
predict_masked_tokens, |
|
inputs=[ |
|
model_name, |
|
own_model_name, |
|
group_a_tokens, |
|
group_b_tokens, |
|
x_axis, |
|
place_holder, |
|
to_normalize, |
|
n_fit, |
|
input_text, |
|
], |
|
outputs=[sample_text, female_fig, male_fig, df], |
|
) |
|
|
|
demo.launch(debug=True, share=True) |
|
|
|
|
|
|
|
|
|
|