emilylearning's picture
functional w dags
704ce7b
raw
history blame
11.3 kB
# !pip install gradio -q
# !pip install transformers -q
# %%
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from matplotlib.ticker import MaxNLocator
from transformers import pipeline
# %%
MODEL_NAMES = [
"bert-base-uncased",
"roberta-base",
"bert-large-uncased",
"roberta-large",
]
OWN_MODEL_NAME = "add-a-model"
DECIMAL_PLACES = 1
EPS = 1e-5 # to avoid /0 errors
# %%
# Fire up the models
models = dict()
for bert_like in MODEL_NAMES:
models[bert_like] = pipeline("fill-mask", model=bert_like)
# %%
def clean_tokens(tokens):
return [token.strip() for token in tokens]
def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
text_w_masks_list = [
mask_token if word.lower() in gendered_tokens else word
for word in input_text.split()
]
num_masks = len([m for m in text_w_masks_list if m == mask_token])
text_portions = " ".join(text_w_masks_list).split(split_key)
return text_portions, num_masks
def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
pronoun_preds = [
sum(
[
pronoun["score"]
if pronoun["token_str"].strip().lower() in gendered_token
else 0.0
for pronoun in top_preds
]
)
for top_preds in mask_filled_text
]
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
def get_figure(df, gender, n_fit=1):
df = df.set_index("x-axis")
cols = df.columns
xs = list(range(len(df)))
ys = df[cols[0]]
fig, ax = plt.subplots()
# Trying small fig due to rendering issues on HF, not on VS Code
fig.set_figheight(3)
fig.set_figwidth(9)
# find stackoverflow reference
p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
t = np.linspace(min(xs)-1, max(xs)+1, 10*len(xs))
TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T
# matrix multiplication calculates the polynomial values
yi = np.dot(TT, p)
C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
ax.plot(t, yi, '-')
ax.plot(df, "ro")
ax.legend(list(df.columns))
ax.axis("tight")
ax.set_xlabel("Value injected into input text")
ax.set_title(f"Probability of predicting {gender} tokens.")
ax.set_ylabel(f"Softmax prob")
ax.tick_params(axis="x", labelrotation=5)
ax.set_ylim(0, 100)
return fig
# %%
def predict_masked_tokens(
model_name,
own_model_name,
group_a_tokens,
group_b_tokens,
indie_vars,
split_key,
normalizing,
n_fit,
input_text,
):
"""Run inference on input_text for each model type, returning df and plots of percentage
of gender pronouns predicted as female and male in each target text.
"""
if model_name not in MODEL_NAMES:
model = pipeline("fill-mask", model=own_model_name)
else:
model = models[model_name]
mask_token = model.tokenizer.mask_token
indie_vars_list = indie_vars.split(",")
group_a_tokens = clean_tokens(group_a_tokens.split(","))
group_b_tokens = clean_tokens(group_b_tokens.split(","))
text_segments, num_preds = prepare_text_for_masking(
input_text, mask_token, group_b_tokens + group_a_tokens, split_key
)
male_pronoun_preds = []
female_pronoun_preds = []
for indie_var in indie_vars_list:
target_text = f"{indie_var}".join(text_segments)
mask_filled_text = model(target_text)
# Quick hack as realized return type based on how many MASKs in text.
if type(mask_filled_text[0]) is not list:
mask_filled_text = [mask_filled_text]
female_pronoun_preds.append(
get_avg_prob_from_pipeline_outputs(
mask_filled_text, group_a_tokens, num_preds
)
)
male_pronoun_preds.append(
get_avg_prob_from_pipeline_outputs(
mask_filled_text, group_b_tokens, num_preds
)
)
if normalizing:
total_gendered_probs = np.add(female_pronoun_preds, male_pronoun_preds)
female_pronoun_preds = np.around(
np.divide(female_pronoun_preds, total_gendered_probs + EPS) * 100,
decimals=DECIMAL_PLACES,
)
male_pronoun_preds = np.around(
np.divide(male_pronoun_preds, total_gendered_probs + EPS) * 100,
decimals=DECIMAL_PLACES,
)
results_df = pd.DataFrame({"x-axis": indie_vars_list})
results_df["group_a"] = female_pronoun_preds
results_df["group_b"] = male_pronoun_preds
female_fig = get_figure(
results_df.drop("group_b", axis=1),
"group_a",
n_fit,
)
male_fig = get_figure(
results_df.drop("group_a", axis=1),
"group_b",
n_fit,
)
display_text = f"{random.choice(indie_vars_list)}".join(text_segments)
return (
display_text,
female_fig,
male_fig,
results_df,
)
truck_fn_example = [
MODEL_NAMES[2],
'',
', '.join(['truck', 'pickup']),
', '.join(['car', 'sedan']),
', '.join(['city','neighborhood','farm']),
'PLACE',
"True",
1,
]
def truck_1_fn():
return truck_fn_example + [
'He loaded up his truck and drove to the PLACE.'
]
def truck_2_fn():
return truck_fn_example + [
'He loaded up the bed of his truck and drove to the PLACE.'
]
# # %%
demo = gr.Blocks()
with demo:
gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
gr.Markdown("## Instructions for this Demo")
gr.Markdown(
"1) Click on one of the examples below to pre-populate the input fields."
)
gr.Markdown(
"2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!"
)
gr.Markdown(
"3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!"
)
gr.Markdown("""The pre-populated inputs below are for a demo example of a location-vs-vehicle-type spurious correlation.
We can see this spurious correlation largely disappears in the well-specified example text.
<p align="center">
<img src="file/non_well_spec.png" alt="results" width="300"/>
</p>
<p align="center">
<img src="file/well_spec.png" alt="results" width="300"/>
</p>
""")
gr.Markdown("## Example inputs")
gr.Markdown(
"Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions."
)
with gr.Row():
truck_1_gen = gr.Button("Click for non-well-specified(?) vehicle-type example inputs")
gr.Markdown("<-- Multiple solutions with low training error. LLM sensitive to spurious(?) correlations.")
truck_2_gen = gr.Button("Click for well-specified vehicle-type example inputs")
gr.Markdown("<-- Fewer solutions with low training error. LLM less sensitive to spurious(?) correlations.")
gr.Markdown("## Input fields")
gr.Markdown(
f"A) Pick a spectrum of comma separated values for text injection and x-axis."
)
with gr.Row():
group_a_tokens = gr.Textbox(
type="text",
lines=3,
label="A) To-MASK tokens A: Comma separated words that account for accumulated group A softmax probs",
)
group_b_tokens = gr.Textbox(
type="text",
lines=3,
label="B) To-MASK tokens B: Comma separated words that account for accumulated group B softmax probs",
)
with gr.Row():
x_axis = gr.Textbox(
type="text",
lines=3,
label="C) Comma separated values for text injection and x-axis",
)
gr.Markdown("D) Pick a pre-loaded BERT-family model of interest on the right.")
gr.Markdown(
f"Or E) select `{OWN_MODEL_NAME}`, then add the mame of any other Hugging Face model that supports the [fill-mask](https://huggingface.co./models?pipeline_tag=fill-mask) task on the right (note: this may take some time to load)."
)
with gr.Row():
model_name = gr.Radio(
MODEL_NAMES + [OWN_MODEL_NAME],
type="value",
label="D) BERT-like model.",
)
own_model_name = gr.Textbox(
label="E) If you selected an 'add-a-model' model, put any Hugging Face pipeline model name (that supports the fill-mask task) here.",
)
gr.Markdown(
"F) Pick if you want to the predictions normalied to only those from group A or B."
)
gr.Markdown(
"G) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above."
)
gr.Markdown(
"And H) the degree of polynomial fit used for high-lighting potential spurious association."
)
with gr.Row():
to_normalize = gr.Dropdown(
["False", "True"],
label="D) Normalize model's predictions?",
type="index",
)
place_holder = gr.Textbox(
label="E) Special token place-holder",
)
n_fit = gr.Dropdown(
list(range(1, 5)),
label="F) Degree of polynomial fit",
type="value",
)
gr.Markdown(
"I) Finally, add input text that includes at least one of the '`To-MASK`' tokens from (A) or (B) and one place-holder token from (G)."
)
with gr.Row():
input_text = gr.Textbox(
lines=2,
label="I) Input text with a '`To-MASK`' and place-holder token",
)
gr.Markdown("## Outputs!")
with gr.Row():
btn = gr.Button("Hit submit to generate predictions!")
with gr.Row():
sample_text = gr.Textbox(
type="text", label="Output text: Sample of text fed to model"
)
with gr.Row():
female_fig = gr.Plot(type="auto")
male_fig = gr.Plot(type="auto")
with gr.Row():
df = gr.Dataframe(
show_label=True,
overflow_row_behaviour="show_ends",
label="Table of softmax probability for grouped predictions",
)
with gr.Row():
truck_1_gen.click(truck_1_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens,
x_axis, place_holder, to_normalize, n_fit, input_text])
truck_2_gen.click(truck_2_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens,
x_axis, place_holder, to_normalize, n_fit, input_text])
btn.click(
predict_masked_tokens,
inputs=[
model_name,
own_model_name,
group_a_tokens,
group_b_tokens,
x_axis,
place_holder,
to_normalize,
n_fit,
input_text,
],
outputs=[sample_text, female_fig, male_fig, df],
)
demo.launch(debug=True, share=True)
# %%