emilylearning commited on
Commit
704ce7b
·
1 Parent(s): 58e928c

functional w dags

Browse files
Files changed (4) hide show
  1. .gitignore +1 -0
  2. app.py +372 -0
  3. non_well_spec.png +0 -0
  4. well_spec.png +0 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ venv*
app.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # !pip install gradio -q
2
+ # !pip install transformers -q
3
+
4
+ # %%
5
+ import gradio as gr
6
+ import matplotlib.pyplot as plt
7
+ import numpy as np
8
+ import pandas as pd
9
+ import random
10
+ from matplotlib.ticker import MaxNLocator
11
+ from transformers import pipeline
12
+
13
+ # %%
14
+ MODEL_NAMES = [
15
+ "bert-base-uncased",
16
+ "roberta-base",
17
+ "bert-large-uncased",
18
+ "roberta-large",
19
+ ]
20
+ OWN_MODEL_NAME = "add-a-model"
21
+
22
+ DECIMAL_PLACES = 1
23
+ EPS = 1e-5 # to avoid /0 errors
24
+ # %%
25
+
26
+ # Fire up the models
27
+ models = dict()
28
+
29
+ for bert_like in MODEL_NAMES:
30
+ models[bert_like] = pipeline("fill-mask", model=bert_like)
31
+
32
+ # %%
33
+
34
+ def clean_tokens(tokens):
35
+ return [token.strip() for token in tokens]
36
+
37
+
38
+ def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
39
+ text_w_masks_list = [
40
+ mask_token if word.lower() in gendered_tokens else word
41
+ for word in input_text.split()
42
+ ]
43
+ num_masks = len([m for m in text_w_masks_list if m == mask_token])
44
+
45
+ text_portions = " ".join(text_w_masks_list).split(split_key)
46
+ return text_portions, num_masks
47
+
48
+
49
+ def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
50
+ pronoun_preds = [
51
+ sum(
52
+ [
53
+ pronoun["score"]
54
+ if pronoun["token_str"].strip().lower() in gendered_token
55
+ else 0.0
56
+ for pronoun in top_preds
57
+ ]
58
+ )
59
+ for top_preds in mask_filled_text
60
+ ]
61
+ return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
62
+
63
+
64
+
65
+
66
+ def get_figure(df, gender, n_fit=1):
67
+ df = df.set_index("x-axis")
68
+ cols = df.columns
69
+ xs = list(range(len(df)))
70
+ ys = df[cols[0]]
71
+ fig, ax = plt.subplots()
72
+ # Trying small fig due to rendering issues on HF, not on VS Code
73
+ fig.set_figheight(3)
74
+ fig.set_figwidth(9)
75
+
76
+ # find stackoverflow reference
77
+ p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
78
+ t = np.linspace(min(xs)-1, max(xs)+1, 10*len(xs))
79
+ TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T
80
+
81
+ # matrix multiplication calculates the polynomial values
82
+ yi = np.dot(TT, p)
83
+ C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
84
+ sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
85
+
86
+ ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
87
+ ax.plot(t, yi, '-')
88
+ ax.plot(df, "ro")
89
+ ax.legend(list(df.columns))
90
+
91
+ ax.axis("tight")
92
+ ax.set_xlabel("Value injected into input text")
93
+ ax.set_title(f"Probability of predicting {gender} tokens.")
94
+ ax.set_ylabel(f"Softmax prob")
95
+ ax.tick_params(axis="x", labelrotation=5)
96
+ ax.set_ylim(0, 100)
97
+ return fig
98
+
99
+
100
+
101
+ # %%
102
+ def predict_masked_tokens(
103
+ model_name,
104
+ own_model_name,
105
+ group_a_tokens,
106
+ group_b_tokens,
107
+ indie_vars,
108
+ split_key,
109
+ normalizing,
110
+ n_fit,
111
+ input_text,
112
+ ):
113
+ """Run inference on input_text for each model type, returning df and plots of percentage
114
+ of gender pronouns predicted as female and male in each target text.
115
+ """
116
+ if model_name not in MODEL_NAMES:
117
+ model = pipeline("fill-mask", model=own_model_name)
118
+ else:
119
+ model = models[model_name]
120
+
121
+ mask_token = model.tokenizer.mask_token
122
+
123
+ indie_vars_list = indie_vars.split(",")
124
+
125
+ group_a_tokens = clean_tokens(group_a_tokens.split(","))
126
+ group_b_tokens = clean_tokens(group_b_tokens.split(","))
127
+
128
+ text_segments, num_preds = prepare_text_for_masking(
129
+ input_text, mask_token, group_b_tokens + group_a_tokens, split_key
130
+ )
131
+
132
+ male_pronoun_preds = []
133
+ female_pronoun_preds = []
134
+ for indie_var in indie_vars_list:
135
+ target_text = f"{indie_var}".join(text_segments)
136
+ mask_filled_text = model(target_text)
137
+ # Quick hack as realized return type based on how many MASKs in text.
138
+ if type(mask_filled_text[0]) is not list:
139
+ mask_filled_text = [mask_filled_text]
140
+
141
+ female_pronoun_preds.append(
142
+ get_avg_prob_from_pipeline_outputs(
143
+ mask_filled_text, group_a_tokens, num_preds
144
+ )
145
+ )
146
+ male_pronoun_preds.append(
147
+ get_avg_prob_from_pipeline_outputs(
148
+ mask_filled_text, group_b_tokens, num_preds
149
+ )
150
+ )
151
+
152
+ if normalizing:
153
+ total_gendered_probs = np.add(female_pronoun_preds, male_pronoun_preds)
154
+ female_pronoun_preds = np.around(
155
+ np.divide(female_pronoun_preds, total_gendered_probs + EPS) * 100,
156
+ decimals=DECIMAL_PLACES,
157
+ )
158
+ male_pronoun_preds = np.around(
159
+ np.divide(male_pronoun_preds, total_gendered_probs + EPS) * 100,
160
+ decimals=DECIMAL_PLACES,
161
+ )
162
+
163
+ results_df = pd.DataFrame({"x-axis": indie_vars_list})
164
+ results_df["group_a"] = female_pronoun_preds
165
+ results_df["group_b"] = male_pronoun_preds
166
+ female_fig = get_figure(
167
+ results_df.drop("group_b", axis=1),
168
+ "group_a",
169
+ n_fit,
170
+ )
171
+ male_fig = get_figure(
172
+ results_df.drop("group_a", axis=1),
173
+ "group_b",
174
+ n_fit,
175
+ )
176
+ display_text = f"{random.choice(indie_vars_list)}".join(text_segments)
177
+
178
+ return (
179
+ display_text,
180
+ female_fig,
181
+ male_fig,
182
+ results_df,
183
+ )
184
+
185
+
186
+ truck_fn_example = [
187
+ MODEL_NAMES[2],
188
+ '',
189
+ ', '.join(['truck', 'pickup']),
190
+ ', '.join(['car', 'sedan']),
191
+ ', '.join(['city','neighborhood','farm']),
192
+ 'PLACE',
193
+ "True",
194
+ 1,
195
+ ]
196
+ def truck_1_fn():
197
+ return truck_fn_example + [
198
+ 'He loaded up his truck and drove to the PLACE.'
199
+ ]
200
+
201
+ def truck_2_fn():
202
+ return truck_fn_example + [
203
+ 'He loaded up the bed of his truck and drove to the PLACE.'
204
+ ]
205
+
206
+
207
+ # # %%
208
+
209
+
210
+
211
+ demo = gr.Blocks()
212
+ with demo:
213
+ gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
214
+
215
+
216
+ gr.Markdown("## Instructions for this Demo")
217
+ gr.Markdown(
218
+ "1) Click on one of the examples below to pre-populate the input fields."
219
+ )
220
+ gr.Markdown(
221
+ "2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!"
222
+ )
223
+ gr.Markdown(
224
+ "3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!"
225
+ )
226
+
227
+
228
+ gr.Markdown("""The pre-populated inputs below are for a demo example of a location-vs-vehicle-type spurious correlation.
229
+ We can see this spurious correlation largely disappears in the well-specified example text.
230
+
231
+ <p align="center">
232
+ <img src="file/non_well_spec.png" alt="results" width="300"/>
233
+ </p>
234
+
235
+
236
+ <p align="center">
237
+ <img src="file/well_spec.png" alt="results" width="300"/>
238
+ </p>
239
+ """)
240
+
241
+ gr.Markdown("## Example inputs")
242
+ gr.Markdown(
243
+ "Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions."
244
+ )
245
+ with gr.Row():
246
+ truck_1_gen = gr.Button("Click for non-well-specified(?) vehicle-type example inputs")
247
+ gr.Markdown("<-- Multiple solutions with low training error. LLM sensitive to spurious(?) correlations.")
248
+
249
+ truck_2_gen = gr.Button("Click for well-specified vehicle-type example inputs")
250
+ gr.Markdown("<-- Fewer solutions with low training error. LLM less sensitive to spurious(?) correlations.")
251
+
252
+ gr.Markdown("## Input fields")
253
+ gr.Markdown(
254
+ f"A) Pick a spectrum of comma separated values for text injection and x-axis."
255
+ )
256
+
257
+ with gr.Row():
258
+ group_a_tokens = gr.Textbox(
259
+ type="text",
260
+ lines=3,
261
+ label="A) To-MASK tokens A: Comma separated words that account for accumulated group A softmax probs",
262
+ )
263
+
264
+ group_b_tokens = gr.Textbox(
265
+ type="text",
266
+ lines=3,
267
+ label="B) To-MASK tokens B: Comma separated words that account for accumulated group B softmax probs",
268
+ )
269
+
270
+ with gr.Row():
271
+ x_axis = gr.Textbox(
272
+ type="text",
273
+ lines=3,
274
+ label="C) Comma separated values for text injection and x-axis",
275
+ )
276
+
277
+ gr.Markdown("D) Pick a pre-loaded BERT-family model of interest on the right.")
278
+ gr.Markdown(
279
+ f"Or E) select `{OWN_MODEL_NAME}`, then add the mame of any other Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task on the right (note: this may take some time to load)."
280
+ )
281
+
282
+ with gr.Row():
283
+ model_name = gr.Radio(
284
+ MODEL_NAMES + [OWN_MODEL_NAME],
285
+ type="value",
286
+ label="D) BERT-like model.",
287
+ )
288
+ own_model_name = gr.Textbox(
289
+ label="E) If you selected an 'add-a-model' model, put any Hugging Face pipeline model name (that supports the fill-mask task) here.",
290
+ )
291
+
292
+ gr.Markdown(
293
+ "F) Pick if you want to the predictions normalied to only those from group A or B."
294
+ )
295
+ gr.Markdown(
296
+ "G) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above."
297
+ )
298
+ gr.Markdown(
299
+ "And H) the degree of polynomial fit used for high-lighting potential spurious association."
300
+ )
301
+
302
+ with gr.Row():
303
+ to_normalize = gr.Dropdown(
304
+ ["False", "True"],
305
+ label="D) Normalize model's predictions?",
306
+ type="index",
307
+ )
308
+ place_holder = gr.Textbox(
309
+ label="E) Special token place-holder",
310
+ )
311
+ n_fit = gr.Dropdown(
312
+ list(range(1, 5)),
313
+ label="F) Degree of polynomial fit",
314
+ type="value",
315
+ )
316
+
317
+ gr.Markdown(
318
+ "I) Finally, add input text that includes at least one of the '`To-MASK`' tokens from (A) or (B) and one place-holder token from (G)."
319
+ )
320
+
321
+ with gr.Row():
322
+ input_text = gr.Textbox(
323
+ lines=2,
324
+ label="I) Input text with a '`To-MASK`' and place-holder token",
325
+ )
326
+
327
+ gr.Markdown("## Outputs!")
328
+ with gr.Row():
329
+ btn = gr.Button("Hit submit to generate predictions!")
330
+
331
+ with gr.Row():
332
+ sample_text = gr.Textbox(
333
+ type="text", label="Output text: Sample of text fed to model"
334
+ )
335
+ with gr.Row():
336
+ female_fig = gr.Plot(type="auto")
337
+ male_fig = gr.Plot(type="auto")
338
+ with gr.Row():
339
+ df = gr.Dataframe(
340
+ show_label=True,
341
+ overflow_row_behaviour="show_ends",
342
+ label="Table of softmax probability for grouped predictions",
343
+ )
344
+
345
+ with gr.Row():
346
+ truck_1_gen.click(truck_1_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens,
347
+ x_axis, place_holder, to_normalize, n_fit, input_text])
348
+
349
+ truck_2_gen.click(truck_2_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens,
350
+ x_axis, place_holder, to_normalize, n_fit, input_text])
351
+
352
+ btn.click(
353
+ predict_masked_tokens,
354
+ inputs=[
355
+ model_name,
356
+ own_model_name,
357
+ group_a_tokens,
358
+ group_b_tokens,
359
+ x_axis,
360
+ place_holder,
361
+ to_normalize,
362
+ n_fit,
363
+ input_text,
364
+ ],
365
+ outputs=[sample_text, female_fig, male_fig, df],
366
+ )
367
+
368
+ demo.launch(debug=True, share=True)
369
+
370
+ # %%
371
+
372
+
non_well_spec.png ADDED
well_spec.png ADDED