File size: 7,982 Bytes
167702a f922fb0 167702a fbfdc46 167702a fbfdc46 167702a f922fb0 167702a f922fb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import pandas as pd
import os
import pickle
from datetime import datetime
from sklearn import set_config
set_config(transform_output="pandas")
# PAGE CONFIG
# page_icon = "πͺ΄"
# Setup variables and constants
# datetime.now().strftime('%d-%m-%Y _ %Hh %Mm %Ss')
DIRPATH = os.path.dirname(os.path.realpath(__file__))
tmp_dir = os.path.join(DIRPATH, "src", "assets", "tmp",)
# os.system(f'rm -vf {tmp_dir}/*.csv')
tmp_df_fp = os.path.join(
tmp_dir, f"history_{datetime.now().strftime('%d-%m-%Y')}.csv")
ml_core_fp = os.path.join(DIRPATH, "src", "assets",
"ml", "crop_recommandation2.pkl")
init_df = pd.DataFrame(
{
"N": [],
"P": [],
"K": [],
"temperature": [],
"humidity": [],
"ph": [],
"rainfall": [],
}
)
# FUNCTIONS
def load_ml_components(fp):
"Load the ml component to re-use in app"
with open(fp, "rb") as f:
object = pickle.load(f)
return object
def setup(fp):
"Setup the required elements like files, models, global variables, etc"
# history frame
if not os.path.exists(fp):
df_history = init_df.copy()
else:
df_history = pd.read_csv(fp)
df_history.to_csv(fp, index=False)
return df_history
def select_categorical_widget(col_index, col_name, encoder):
"""This function will return the right widget to use for each categorical feature
"""
categories = encoder.categories_[col_index].tolist()
n_unique = len(categories)
# print(
# f"[Info] unique categories for feature {col_name} ({type(categories)}) are : {categories}")
if n_unique == 2:
print(
f"[Info] unique categories for feature '{col_index}' {col_name} ({type(categories)}) are : {categories}")
widget = gr.Checkbox(label=f"Enter {col_name}", value=categories)
elif n_unique <= 5:
widget = gr.Radio(label=f"Enter {col_name}", choices=categories)
else:
widget = gr.Dropdown(label=f"Enter {col_name}", choices=categories)
return widget
def make_prediction(*args):
"""Function that takes values from fields to make 1-by-1 prediction
"""
print(
f"[Info] input args of the function {args} ")
raw = {k: [val if not isinstance(val, list) else val[0]]
for val, k in zip(args, num_cols+cat_cols)}
print(
f"[Info] input modified a bit {raw}\n")
df_input = pd.DataFrame(raw)
global df_history
# print(f"\n[Info] Input information as dataframe: \n{df_input.to_string()}")
df_input.drop_duplicates(inplace=True, ignore_index=True)
print(f"\n[Info] Input with duplicated rows: \n{df_input.to_string()}")
df_input_num, df_input_cat = None, None
if len(cat_cols) > 0:
df_input_cat = df_input[cat_cols].copy()
if cat_imputer:
df_input_cat = cat_imputer.transform(df_input_cat)
if encoder:
df_input_cat = encoder.transform(df_input_cat)
if len(num_cols) > 0:
df_input_num = df_input[num_cols].copy()
if num_imputer:
df_input_num = num_imputer.transform(df_input_num)
if scaler:
df_input_num = scaler.transform(df_input_num)
df_input_ok = pd.concat([df_input_num, df_input_cat], axis=1)
prediction_output = model.predict_proba(df_input_ok)
output = model.predict_proba(df_input_ok)
# store confidence score/ probability for the predicted class
confidence_score = output.max(axis=-1)
df_input["confidence score"] = confidence_score
# get index of the predicted class
predicted_idx = output.argmax(axis=-1)
# store index then replace by the matching label
df_input["predicted crop"] = predicted_idx
predicted_label = df_input["predicted crop"].replace(idx_to_labels)
df_input["predicted crop"] = predicted_label
print(
f"[Info] Prediction output (of type '{type(prediction_output)}') from passed input: {prediction_output} of shape {prediction_output.shape}")
# print(f"[Info] Prediction: {prediction_output}")
# df_input['prediction'] = prediction_output
print(
f"\n[Info] output information as dataframe: \n{df_input.to_string()}")
df_history = pd.concat([df_history, df_input], ignore_index=True).drop_duplicates(
ignore_index=True, keep='last')
df_history.to_csv(tmp_df_fp, index=False, )
return df_input
def download():
return gr.File.update(label="History File",
visible=True,
value=tmp_df_fp)
def hide_download():
return gr.File.update(label="History File",
visible=False)
# Setup execution
ml_components_dict = load_ml_components(fp=ml_core_fp)
num_cols = [
"N",
"P",
"K",
"temperature",
"humidity",
"ph",
"rainfall",
]
cat_cols = ml_components_dict['cat_cols'] if 'cat_cols' in ml_components_dict else [
]
num_imputer = ml_components_dict['num_imputer'].set_output(transform="pandas") if (
'num_cols' in ml_components_dict and 'num_imputer' in ml_components_dict) else None
cat_imputer = ml_components_dict['cat_imputer'].set_output(transform="pandas") if (
'cat_cols' in ml_components_dict and 'cat_imputer' in ml_components_dict) else None
scaler = ml_components_dict['scaler'].set_output(
transform="pandas") if 'scaler' in ml_components_dict else None
encoder = ml_components_dict['encoder'] if 'encoder' in ml_components_dict else None
model = ml_components_dict['model']
labels = ml_components_dict['labels'] if 'labels' in ml_components_dict else []
idx_to_labels = {i: l for (i, l) in enumerate(labels)}
# end2end_pipeline = ml_components_dict['pipeline'] if 'pipeline' in ml_components_dict else None
print(f"\n[Info] ML components loaded: {list(ml_components_dict.keys())}")
df_history = setup(tmp_df_fp)
# APP Interface
# Main page
demo_inputs = []
with gr.Blocks() as demo:
gr.Markdown('''<img class="center" src="https://www.verdict.co.uk/wp-content/uploads/2018/12/Agri-tech.jpg" width="60%" height="60%">
<style>
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
}
</style>''')
gr.Markdown('''<center><h1> π Agri-Tech App π </h1><center>''')
gr.Markdown('''
This is a ML API for classification of crop to plant on a land regarding some features
''')
with gr.Row():
for i in range(0, init_df.shape[1],):
demo_inputs.append(gr.Number(label=f"Enter {num_cols[i]}"))
# with gr.Row():
# for i in range(0,init_df.shape[1], multiple_of):
# gr.Number(label=f"Enter {num_cols[i]}")
# gr.Number(label=f"Enter {num_cols[i+1]}")
# # gr.Number(label=f"Enter {num_cols[i+2]}")
output = gr.Dataframe(df_history)
btn_predict = gr.Button("Predict")
btn_predict.click(fn=make_prediction, inputs=demo_inputs, outputs=output)
file_obj = gr.File(label="History File",
visible=False
)
btn_download = gr.Button("Download")
btn_download.click(fn=download, inputs=[], outputs=file_obj)
output.change(fn=hide_download, inputs=[], outputs=file_obj)
# second demo
# num_inputs = [gr.Number(label=f"Enter {col}") for col in num_cols]
# cat_inputs = [select_categorical_widget(col_index=i, col_name=col, encoder=encoder) for i, col in enumerate(cat_cols)]
# inputs = num_inputs + cat_inputs
# demo = gr.Interface(
# make_prediction,
# inputs,
# "dataframe", # "number"
# examples=[
# # [2, "cat", ["Japan", "Pakistan"], "park", ["ate", "swam"], True],
# ]
# )
demo.launch(
debug=True
)#share=True,
|