eaedk commited on
Commit
167702a
β€’
1 Parent(s): 9bb4781
Files changed (1) hide show
  1. app.py +248 -0
app.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import os
4
+ import pickle
5
+ from datetime import datetime
6
+ from sklearn import set_config
7
+ set_config(transform_output="pandas")
8
+
9
+ # PAGE CONFIG
10
+ # page_icon = "πŸ’"
11
+
12
+ # Setup variables and constants
13
+ # datetime.now().strftime('%d-%m-%Y _ %Hh %Mm %Ss')
14
+ DIRPATH = os.path.dirname(os.path.realpath(__file__))
15
+ tmp_dir = os.path.join(DIRPATH, "src", "assets", "tmp",)
16
+ os.system(f'rm -vf {tmp_dir}/*')
17
+ tmp_df_fp = os.path.join(
18
+ tmp_dir, f"history_{datetime.now().strftime('%d-%m-%Y _ %Hh %Mm %Ss')}.csv")
19
+ ml_core_fp = os.path.join(DIRPATH, "src", "assets",
20
+ "ml", "crop_recommandation2.pkl")
21
+ init_df = pd.DataFrame(
22
+ {
23
+ "N": [],
24
+ "P": [],
25
+ "K": [],
26
+ "temperature": [],
27
+ "humidity": [],
28
+ "ph": [],
29
+ "rainfall": [],
30
+ }
31
+ )
32
+
33
+ # FUNCTIONS
34
+
35
+
36
+ def load_ml_components(fp):
37
+ "Load the ml component to re-use in app"
38
+ with open(fp, "rb") as f:
39
+ object = pickle.load(f)
40
+ return object
41
+
42
+
43
+ def setup(fp):
44
+ "Setup the required elements like files, models, global variables, etc"
45
+
46
+ # history frame
47
+ if not os.path.exists(fp):
48
+ df_history = init_df.copy()
49
+ else:
50
+ df_history = pd.read_csv(fp)
51
+
52
+ df_history.to_csv(fp, index=False)
53
+
54
+ return df_history
55
+
56
+
57
+ def select_categorical_widget(col_index, col_name, encoder):
58
+ """This function will return the right widget to use for each categorical feature
59
+ """
60
+
61
+ categories = encoder.categories_[col_index].tolist()
62
+ n_unique = len(categories)
63
+
64
+ # print(
65
+ # f"[Info] unique categories for feature {col_name} ({type(categories)}) are : {categories}")
66
+
67
+ if n_unique == 2:
68
+ print(
69
+ f"[Info] unique categories for feature '{col_index}' {col_name} ({type(categories)}) are : {categories}")
70
+
71
+ widget = gr.Checkbox(label=f"Enter {col_name}", value=categories)
72
+ elif n_unique <= 5:
73
+ widget = gr.Radio(label=f"Enter {col_name}", choices=categories)
74
+ else:
75
+ widget = gr.Dropdown(label=f"Enter {col_name}", choices=categories)
76
+
77
+ return widget
78
+
79
+
80
+ def make_prediction(*args):
81
+ """Function that takes values from fields to make 1-by-1 prediction
82
+ """
83
+ print(
84
+ f"[Info] input args of the function {args} ")
85
+ raw = {k: [val if not isinstance(val, list) else val[0]]
86
+ for val, k in zip(args, num_cols+cat_cols)}
87
+ print(
88
+ f"[Info] input modified a bit {raw}\n")
89
+
90
+ df_input = pd.DataFrame(raw)
91
+ global df_history
92
+
93
+ # print(f"\n[Info] Input information as dataframe: \n{df_input.to_string()}")
94
+ df_input.drop_duplicates(inplace=True, ignore_index=True)
95
+ print(f"\n[Info] Input with duplicated rows: \n{df_input.to_string()}")
96
+
97
+ df_input_num, df_input_cat = None, None
98
+
99
+ if len(cat_cols) > 0:
100
+ df_input_cat = df_input[cat_cols].copy()
101
+ if cat_imputer:
102
+ df_input_cat = cat_imputer.transform(df_input_cat)
103
+ if encoder:
104
+ df_input_cat = encoder.transform(df_input_cat)
105
+
106
+ if len(num_cols) > 0:
107
+ df_input_num = df_input[num_cols].copy()
108
+ if num_imputer:
109
+ df_input_num = num_imputer.transform(df_input_num)
110
+ if scaler:
111
+ df_input_num = scaler.transform(df_input_num)
112
+
113
+ df_input_ok = pd.concat([df_input_num, df_input_cat], axis=1)
114
+
115
+ prediction_output = model.predict_proba(df_input_ok)
116
+
117
+ output = model.predict_proba(df_input_ok)
118
+
119
+ # store confidence score/ probability for the predicted class
120
+ confidence_score = output.max(axis=-1)
121
+ df_input["confidence score"] = confidence_score
122
+
123
+ # get index of the predicted class
124
+ predicted_idx = output.argmax(axis=-1)
125
+
126
+ # store index then replace by the matching label
127
+ df_input["predicted crop"] = predicted_idx
128
+ predicted_label = df_input["predicted crop"].replace(idx_to_labels)
129
+ df_input["predicted crop"] = predicted_label
130
+
131
+ print(
132
+ f"[Info] Prediction output (of type '{type(prediction_output)}') from passed input: {prediction_output} of shape {prediction_output.shape}")
133
+
134
+ # print(f"[Info] Prediction: {prediction_output}")
135
+ # df_input['prediction'] = prediction_output
136
+
137
+ print(
138
+ f"\n[Info] output information as dataframe: \n{df_input.to_string()}")
139
+ df_history = pd.concat([df_history, df_input], ignore_index=True).drop_duplicates(
140
+ ignore_index=True, keep='last')
141
+ df_history.to_csv(tmp_df_fp, index=False, )
142
+
143
+ return df_input
144
+
145
+
146
+ def download():
147
+ return gr.File.update(label="History File",
148
+ visible=True,
149
+ value=tmp_df_fp)
150
+
151
+
152
+ def hide_download():
153
+ return gr.File.update(label="History File",
154
+ visible=False)
155
+
156
+
157
+ # Setup execution
158
+ ml_components_dict = load_ml_components(fp=ml_core_fp)
159
+
160
+ num_cols = [
161
+ "N",
162
+ "P",
163
+ "K",
164
+ "temperature",
165
+ "humidity",
166
+ "ph",
167
+ "rainfall",
168
+ ]
169
+ cat_cols = ml_components_dict['cat_cols'] if 'cat_cols' in ml_components_dict else [
170
+ ]
171
+ num_imputer = ml_components_dict['num_imputer'].set_output(transform="pandas") if (
172
+ 'num_cols' in ml_components_dict and 'num_imputer' in ml_components_dict) else None
173
+ cat_imputer = ml_components_dict['cat_imputer'].set_output(transform="pandas") if (
174
+ 'cat_cols' in ml_components_dict and 'cat_imputer' in ml_components_dict) else None
175
+ scaler = ml_components_dict['scaler'].set_output(
176
+ transform="pandas") if 'scaler' in ml_components_dict else None
177
+ encoder = ml_components_dict['encoder'] if 'encoder' in ml_components_dict else None
178
+ model = ml_components_dict['model']
179
+ labels = ml_components_dict['labels'] if 'labels' in ml_components_dict else []
180
+ idx_to_labels = {i: l for (i, l) in enumerate(labels)}
181
+ end2end_pipeline = ml_components_dict['pipeline']
182
+ print(f"\n[Info] ML components loaded: {list(ml_components_dict.keys())}")
183
+
184
+ df_history = setup(tmp_df_fp)
185
+
186
+
187
+ # APP Interface
188
+
189
+ # Main page
190
+ demo_inputs = []
191
+ with gr.Blocks() as demo:
192
+ gr.Markdown('''<img class="center" src="https://www.verdict.co.uk/wp-content/uploads/2018/12/Agri-tech.jpg" width="60%" height="60%">
193
+ <style>
194
+ .center {
195
+ display: block;
196
+ margin-left: auto;
197
+ margin-right: auto;
198
+ width: 50%;
199
+ }
200
+ </style>''')
201
+ gr.Markdown('''<center><h1> πŸš€ Agri-Tech App πŸš€ </h1><center>''')
202
+ gr.Markdown('''
203
+ This is a ML API for classification of crop to plant on a land regarding some features
204
+ ''')
205
+
206
+ multiple_of = 7
207
+ print(f"\n[INFO] {init_df.shape[1]}\n")
208
+
209
+ with gr.Row():
210
+ for i in range(0, init_df.shape[1],):
211
+ demo_inputs.append(gr.Number(label=f"Enter {num_cols[i]}"))
212
+
213
+ # with gr.Row():
214
+ # for i in range(0,init_df.shape[1], multiple_of):
215
+ # gr.Number(label=f"Enter {num_cols[i]}")
216
+ # gr.Number(label=f"Enter {num_cols[i+1]}")
217
+ # # gr.Number(label=f"Enter {num_cols[i+2]}")
218
+ output = gr.Dataframe(df_history)
219
+
220
+ btn_predict = gr.Button("Predict")
221
+ btn_predict.click(fn=make_prediction, inputs=demo_inputs, outputs=output)
222
+
223
+ file_obj = gr.File(label="History File",
224
+ visible=False
225
+ )
226
+
227
+ btn_download = gr.Button("Download")
228
+ btn_download.click(fn=download, inputs=[], outputs=file_obj)
229
+ output.change(fn=hide_download, inputs=[], outputs=file_obj)
230
+
231
+ # second demo
232
+ # num_inputs = [gr.Number(label=f"Enter {col}") for col in num_cols]
233
+ # cat_inputs = [select_categorical_widget(col_index=i, col_name=col, encoder=encoder) for i, col in enumerate(cat_cols)]
234
+
235
+ # inputs = num_inputs + cat_inputs
236
+
237
+ # demo = gr.Interface(
238
+ # make_prediction,
239
+ # inputs,
240
+ # "dataframe", # "number"
241
+ # examples=[
242
+ # # [2, "cat", ["Japan", "Pakistan"], "park", ["ate", "swam"], True],
243
+ # ]
244
+ # )
245
+
246
+
247
+ if __name__ == "__main__":
248
+ demo.launch()