Spaces:
Running
Running
import functools | |
import json | |
import os | |
import sys | |
import tempfile | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
import torch | |
from PIL import Image | |
from segment_anything import build_sam | |
from segment_anything import SamAutomaticMaskGenerator | |
from segment_anything import SamPredictor | |
from supervision.detection.utils import mask_to_polygons | |
from supervision.detection.utils import xywh_to_xyxy | |
if os.environ.get("IS_MY_DEBUG") is None: | |
os.system("pip install -e GroundingDINO") | |
sys.path.append("tag2text") | |
sys.path.append("GroundingDINO") | |
from groundingdino.util.inference import Model as DinoModel | |
from tag2text.models import tag2text | |
from config import * | |
from utils import download_file_hf, detect, segment, generate_tags | |
if not os.path.exists(abs_weight_dir): | |
os.makedirs(abs_weight_dir, exist_ok=True) | |
sam_checkpoint = os.path.join(abs_weight_dir, sam_dict[default_sam]["checkpoint_file"]) | |
if not os.path.exists(sam_checkpoint): | |
os.system(f"wget {sam_dict[default_sam]['checkpoint_url']} -O {sam_checkpoint}") | |
tag2text_checkpoint = os.path.join( | |
abs_weight_dir, tag2text_dict[default_tag2text]["checkpoint_file"] | |
) | |
if not os.path.exists(tag2text_checkpoint): | |
os.system( | |
f"wget {tag2text_dict[default_tag2text]['checkpoint_url']} -O {tag2text_checkpoint}" | |
) | |
dino_checkpoint = os.path.join( | |
abs_weight_dir, dino_dict[default_dino]["checkpoint_file"] | |
) | |
dino_config_file = os.path.join(abs_weight_dir, dino_dict[default_dino]["config_file"]) | |
if not os.path.exists(dino_checkpoint): | |
dino_repo_id = dino_dict[default_dino]["repo_id"] | |
download_file_hf( | |
repo_id=dino_repo_id, | |
filename=dino_dict[default_dino]["config_file"], | |
cache_dir=weight_dir, | |
) | |
download_file_hf( | |
repo_id=dino_repo_id, | |
filename=dino_dict[default_dino]["checkpoint_file"], | |
cache_dir=weight_dir, | |
) | |
# load model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
tag2text_model = tag2text.tag2text_caption( | |
pretrained=tag2text_checkpoint, | |
image_size=384, | |
vit="swin_b", | |
delete_tag_index=delete_tag_index, | |
) | |
# threshold for tagging | |
# we reduce the threshold to obtain more tags | |
tag2text_model.threshold = 0.64 | |
tag2text_model.to(device) | |
tag2text_model.eval() | |
sam = build_sam(checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
sam_predictor = SamPredictor(sam) | |
sam_automask_generator = SamAutomaticMaskGenerator(sam) | |
grounding_dino_model = DinoModel( | |
model_config_path=dino_config_file, | |
model_checkpoint_path=dino_checkpoint, | |
device=device, | |
) | |
def process( | |
image_path, | |
task, | |
prompt, | |
box_threshold, | |
text_threshold, | |
iou_threshold, | |
kernel_size, | |
expand_mask, | |
): | |
global tag2text_model, sam_predictor, sam_automask_generator, grounding_dino_model, device | |
output_gallery = [] | |
detections = None | |
metadata = {"image": {}, "annotations": []} | |
try: | |
# Load image | |
image = Image.open(image_path) | |
image_pil = image.convert("RGB") | |
image = np.array(image_pil) | |
orig_image = image.copy() | |
# Extract image metadata | |
filename = os.path.basename(image_path) | |
h, w = image.shape[:2] | |
metadata["image"]["file_name"] = filename | |
metadata["image"]["width"] = w | |
metadata["image"]["height"] = h | |
# Generate tags | |
if task in ["auto", "detection"] and prompt == "": | |
tags, caption = generate_tags(tag2text_model, image_pil, "None", device) | |
prompt = " . ".join(tags) | |
print(f"Caption: {caption}") | |
print(f"Tags: {tags}") | |
# ToDo: Extract metadata | |
metadata["image"]["caption"] = caption | |
metadata["image"]["tags"] = tags | |
if prompt: | |
metadata["prompt"] = prompt | |
print(f"Prompt: {prompt}") | |
# Detect boxes | |
if prompt != "": | |
detections, phrases, classes = detect( | |
grounding_dino_model, | |
image, | |
caption=prompt, | |
box_threshold=box_threshold, | |
text_threshold=text_threshold, | |
iou_threshold=iou_threshold, | |
post_process=True, | |
) | |
print(phrases) | |
# Draw boxes | |
box_annotator = sv.BoxAnnotator() | |
labels = [ | |
f"{phrases[i]} {detections.confidence[i]:0.2f}" | |
for i in range(len(phrases)) | |
] | |
image = box_annotator.annotate( | |
scene=image, detections=detections, labels=labels | |
) | |
output_gallery.append(image) | |
# Segmentation | |
if task in ["auto", "segment"]: | |
kernel = cv2.getStructuringElement( | |
cv2.MORPH_ELLIPSE, (2 * kernel_size + 1, 2 * kernel_size + 1) | |
) | |
if detections: | |
masks, scores = segment( | |
sam_predictor, image=orig_image, boxes=detections.xyxy | |
) | |
if expand_mask: | |
masks = [ | |
cv2.dilate(mask.astype(np.uint8), kernel) for mask in masks | |
] | |
else: | |
masks = [ | |
cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, kernel) | |
for mask in masks | |
] | |
detections.mask = masks | |
binary_mask = functools.reduce( | |
lambda x, y: x + y, detections.mask | |
).astype(bool) | |
else: | |
masks = sam_automask_generator.generate(orig_image) | |
sorted_generated_masks = sorted( | |
masks, key=lambda x: x["area"], reverse=True | |
) | |
xywh = np.array([mask["bbox"] for mask in sorted_generated_masks]) | |
scores = np.array( | |
[mask["predicted_iou"] for mask in sorted_generated_masks] | |
) | |
if expand_mask: | |
mask = np.array( | |
[ | |
cv2.dilate(mask["segmentation"].astype(np.uint8), kernel) | |
for mask in sorted_generated_masks | |
] | |
) | |
else: | |
mask = np.array( | |
[mask["segmentation"] for mask in sorted_generated_masks] | |
) | |
detections = sv.Detections( | |
xyxy=xywh_to_xyxy(boxes_xywh=xywh), mask=mask | |
) | |
binary_mask = None | |
mask_annotator = sv.MaskAnnotator() | |
mask_image = np.zeros_like(image, dtype=np.uint8) | |
mask_image = mask_annotator.annotate( | |
mask_image, detections=detections, opacity=1 | |
) | |
annotated_image = mask_annotator.annotate(image, detections=detections) | |
output_gallery.append(mask_image) | |
if binary_mask is not None: | |
binary_mask_image = binary_mask * 255 | |
cutout_image = np.expand_dims(binary_mask, axis=-1) * orig_image | |
output_gallery.append(binary_mask_image) | |
output_gallery.append(cutout_image) | |
output_gallery.append(annotated_image) | |
# ToDo: Extract metadata | |
if detections: | |
i = 0 | |
for (xyxy, mask, confidence, _, _), area, box_area in zip( | |
detections, detections.area, detections.box_area | |
): | |
annotation = { | |
"id": i + 1, | |
"bbox": [int(x) for x in xyxy], | |
"box_area": float(box_area), | |
} | |
if confidence: | |
annotation["confidence"] = float(confidence) | |
annotation["label"] = phrases[i] | |
if mask is not None: | |
# annotation["segmentation"] = mask_to_polygons(mask) | |
annotation["area"] = int(area) | |
annotation["predicted_iou"] = float(scores[i]) | |
metadata["annotations"].append(annotation) | |
i += 1 | |
meta_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json") | |
meta_file_path = meta_file.name | |
with open(meta_file_path, "w", encoding="utf-8") as fp: | |
json.dump(metadata, fp) | |
return output_gallery, meta_file_path | |
except Exception as error: | |
raise gr.Error(f"global exception: {error}") | |
title = "Annotate Anything" | |
with gr.Blocks(css="style.css", title=title) as demo: | |
with gr.Row(elem_classes=["container"]): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type="filepath", label="Input") | |
task = gr.Dropdown( | |
["detect", "segment", "auto"], value="auto", label="task_type" | |
) | |
text_prompt = gr.Textbox( | |
label="Detection Prompt", | |
info="To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ", | |
) | |
with gr.Accordion("Advanced parameters", open=False): | |
box_threshold = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.3, | |
step=0.05, | |
label="Box threshold", | |
) | |
text_threshold = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.25, | |
step=0.05, | |
label="Text threshold", | |
) | |
iou_threshold = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.5, | |
step=0.05, | |
label="IOU threshold", | |
info="Intersection over Union threshold", | |
) | |
kernel_size = gr.Slider( | |
minimum=1, | |
maximum=5, | |
value=2, | |
step=1, | |
label="Kernel size", | |
info="Use to smooth segment masks", | |
) | |
expand_mask = gr.Checkbox( | |
label="Expand mask", | |
) | |
run_button = gr.Button(label="Run") | |
with gr.Column(scale=2): | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(preview=True, grid=2, object_fit="scale-down") | |
meta_file = gr.File(label="Metadata file") | |
with gr.Row(elem_classes=["container"]): | |
gr.Examples( | |
[ | |
["examples/dog.png", "auto", ""], | |
["examples/eiffel.jpg", "auto", "tower . lake . grass . sky"], | |
["examples/eiffel.png", "segment", ""], | |
["examples/girl.png", "auto", "girl . face"], | |
["examples/horse.png", "detect", "horse"], | |
["examples/traffic.jpg", "auto", ""], | |
], | |
[input_image, task, text_prompt], | |
) | |
gr.HTML( | |
"""<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co./spaces/dragonSwing/annotate-anything?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br> | |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=dragonswing.annotate-anything" alt="visitors"></p></center>""" | |
) | |
run_button.click( | |
fn=process, | |
inputs=[ | |
input_image, | |
task, | |
text_prompt, | |
box_threshold, | |
text_threshold, | |
iou_threshold, | |
kernel_size, | |
expand_mask, | |
], | |
outputs=[gallery, meta_file], | |
) | |
demo.queue(concurrency_count=2).launch() | |