Spaces:
Running
Running
File size: 12,214 Bytes
2396fdf 5b31094 2396fdf 699405e 5b31094 699405e 5b31094 699405e 5b31094 699405e 5b31094 699405e 9c55eca 5b31094 699405e 5b31094 699405e 5b31094 53c5524 699405e eeef127 699405e 2396fdf 699405e 5b31094 2396fdf 5b31094 2396fdf 5b31094 699405e 5b31094 699405e 5b31094 699405e 5b31094 2396fdf 5b31094 2396fdf 5b31094 2396fdf 5b31094 2396fdf 294db91 5b31094 2396fdf 5b31094 294db91 5b31094 2396fdf 699405e 2396fdf 699405e 2396fdf 699405e 5b31094 cfa05ff 2adf03d 5b31094 cfa05ff 5b31094 cfa05ff 5b31094 cfa05ff 5b31094 cfa05ff 5b31094 699405e 2396fdf 699405e 5b31094 699405e eeef127 699405e eeef127 699405e 2396fdf 699405e 2396fdf 699405e 5b31094 9634227 699405e 2396fdf 699405e 5b31094 699405e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import functools
import json
import os
import sys
import tempfile
import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from segment_anything import build_sam
from segment_anything import SamAutomaticMaskGenerator
from segment_anything import SamPredictor
from supervision.detection.utils import mask_to_polygons
from supervision.detection.utils import xywh_to_xyxy
if os.environ.get("IS_MY_DEBUG") is None:
os.system("pip install -e GroundingDINO")
sys.path.append("tag2text")
sys.path.append("GroundingDINO")
from groundingdino.util.inference import Model as DinoModel
from tag2text.models import tag2text
from config import *
from utils import download_file_hf, detect, segment, generate_tags
if not os.path.exists(abs_weight_dir):
os.makedirs(abs_weight_dir, exist_ok=True)
sam_checkpoint = os.path.join(abs_weight_dir, sam_dict[default_sam]["checkpoint_file"])
if not os.path.exists(sam_checkpoint):
os.system(f"wget {sam_dict[default_sam]['checkpoint_url']} -O {sam_checkpoint}")
tag2text_checkpoint = os.path.join(
abs_weight_dir, tag2text_dict[default_tag2text]["checkpoint_file"]
)
if not os.path.exists(tag2text_checkpoint):
os.system(
f"wget {tag2text_dict[default_tag2text]['checkpoint_url']} -O {tag2text_checkpoint}"
)
dino_checkpoint = os.path.join(
abs_weight_dir, dino_dict[default_dino]["checkpoint_file"]
)
dino_config_file = os.path.join(abs_weight_dir, dino_dict[default_dino]["config_file"])
if not os.path.exists(dino_checkpoint):
dino_repo_id = dino_dict[default_dino]["repo_id"]
download_file_hf(
repo_id=dino_repo_id,
filename=dino_dict[default_dino]["config_file"],
cache_dir=weight_dir,
)
download_file_hf(
repo_id=dino_repo_id,
filename=dino_dict[default_dino]["checkpoint_file"],
cache_dir=weight_dir,
)
# load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tag2text_model = tag2text.tag2text_caption(
pretrained=tag2text_checkpoint,
image_size=384,
vit="swin_b",
delete_tag_index=delete_tag_index,
)
# threshold for tagging
# we reduce the threshold to obtain more tags
tag2text_model.threshold = 0.64
tag2text_model.to(device)
tag2text_model.eval()
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
sam_automask_generator = SamAutomaticMaskGenerator(sam)
grounding_dino_model = DinoModel(
model_config_path=dino_config_file,
model_checkpoint_path=dino_checkpoint,
device=device,
)
def process(
image_path,
task,
prompt,
box_threshold,
text_threshold,
iou_threshold,
kernel_size,
expand_mask,
):
global tag2text_model, sam_predictor, sam_automask_generator, grounding_dino_model, device
output_gallery = []
detections = None
metadata = {"image": {}, "annotations": []}
try:
# Load image
image = Image.open(image_path)
image_pil = image.convert("RGB")
image = np.array(image_pil)
orig_image = image.copy()
# Extract image metadata
filename = os.path.basename(image_path)
h, w = image.shape[:2]
metadata["image"]["file_name"] = filename
metadata["image"]["width"] = w
metadata["image"]["height"] = h
# Generate tags
if task in ["auto", "detection"] and prompt == "":
tags, caption = generate_tags(tag2text_model, image_pil, "None", device)
prompt = " . ".join(tags)
print(f"Caption: {caption}")
print(f"Tags: {tags}")
# ToDo: Extract metadata
metadata["image"]["caption"] = caption
metadata["image"]["tags"] = tags
if prompt:
metadata["prompt"] = prompt
print(f"Prompt: {prompt}")
# Detect boxes
if prompt != "":
detections, phrases, classes = detect(
grounding_dino_model,
image,
caption=prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
iou_threshold=iou_threshold,
post_process=True,
)
print(phrases)
# Draw boxes
box_annotator = sv.BoxAnnotator()
labels = [
f"{phrases[i]} {detections.confidence[i]:0.2f}"
for i in range(len(phrases))
]
image = box_annotator.annotate(
scene=image, detections=detections, labels=labels
)
output_gallery.append(image)
# Segmentation
if task in ["auto", "segment"]:
kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (2 * kernel_size + 1, 2 * kernel_size + 1)
)
if detections:
masks, scores = segment(
sam_predictor, image=orig_image, boxes=detections.xyxy
)
if expand_mask:
masks = [
cv2.dilate(mask.astype(np.uint8), kernel) for mask in masks
]
else:
masks = [
cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, kernel)
for mask in masks
]
detections.mask = masks
binary_mask = functools.reduce(
lambda x, y: x + y, detections.mask
).astype(bool)
else:
masks = sam_automask_generator.generate(orig_image)
sorted_generated_masks = sorted(
masks, key=lambda x: x["area"], reverse=True
)
xywh = np.array([mask["bbox"] for mask in sorted_generated_masks])
scores = np.array(
[mask["predicted_iou"] for mask in sorted_generated_masks]
)
if expand_mask:
mask = np.array(
[
cv2.dilate(mask["segmentation"].astype(np.uint8), kernel)
for mask in sorted_generated_masks
]
)
else:
mask = np.array(
[mask["segmentation"] for mask in sorted_generated_masks]
)
detections = sv.Detections(
xyxy=xywh_to_xyxy(boxes_xywh=xywh), mask=mask
)
binary_mask = None
mask_annotator = sv.MaskAnnotator()
mask_image = np.zeros_like(image, dtype=np.uint8)
mask_image = mask_annotator.annotate(
mask_image, detections=detections, opacity=1
)
annotated_image = mask_annotator.annotate(image, detections=detections)
output_gallery.append(mask_image)
if binary_mask is not None:
binary_mask_image = binary_mask * 255
cutout_image = np.expand_dims(binary_mask, axis=-1) * orig_image
output_gallery.append(binary_mask_image)
output_gallery.append(cutout_image)
output_gallery.append(annotated_image)
# ToDo: Extract metadata
if detections:
i = 0
for (xyxy, mask, confidence, _, _), area, box_area in zip(
detections, detections.area, detections.box_area
):
annotation = {
"id": i + 1,
"bbox": [int(x) for x in xyxy],
"box_area": float(box_area),
}
if confidence:
annotation["confidence"] = float(confidence)
annotation["label"] = phrases[i]
if mask is not None:
# annotation["segmentation"] = mask_to_polygons(mask)
annotation["area"] = int(area)
annotation["predicted_iou"] = float(scores[i])
metadata["annotations"].append(annotation)
i += 1
meta_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json")
meta_file_path = meta_file.name
with open(meta_file_path, "w", encoding="utf-8") as fp:
json.dump(metadata, fp)
return output_gallery, meta_file_path
except Exception as error:
raise gr.Error(f"global exception: {error}")
title = "Annotate Anything"
with gr.Blocks(css="style.css", title=title) as demo:
with gr.Row(elem_classes=["container"]):
with gr.Column(scale=1):
input_image = gr.Image(type="filepath", label="Input")
task = gr.Dropdown(
["detect", "segment", "auto"], value="auto", label="task_type"
)
text_prompt = gr.Textbox(
label="Detection Prompt",
info="To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ",
)
with gr.Accordion("Advanced parameters", open=False):
box_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.3,
step=0.05,
label="Box threshold",
)
text_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.25,
step=0.05,
label="Text threshold",
)
iou_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.05,
label="IOU threshold",
info="Intersection over Union threshold",
)
kernel_size = gr.Slider(
minimum=1,
maximum=5,
value=2,
step=1,
label="Kernel size",
info="Use to smooth segment masks",
)
expand_mask = gr.Checkbox(
label="Expand mask",
)
run_button = gr.Button(label="Run")
with gr.Column(scale=2):
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(preview=True, grid=2, object_fit="scale-down")
meta_file = gr.File(label="Metadata file")
with gr.Row(elem_classes=["container"]):
gr.Examples(
[
["examples/dog.png", "auto", ""],
["examples/eiffel.jpg", "auto", "tower . lake . grass . sky"],
["examples/eiffel.png", "segment", ""],
["examples/girl.png", "auto", "girl . face"],
["examples/horse.png", "detect", "horse"],
["examples/traffic.jpg", "auto", ""],
],
[input_image, task, text_prompt],
)
gr.HTML(
"""<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co./spaces/dragonSwing/annotate-anything?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=dragonswing.annotate-anything" alt="visitors"></p></center>"""
)
run_button.click(
fn=process,
inputs=[
input_image,
task,
text_prompt,
box_threshold,
text_threshold,
iou_threshold,
kernel_size,
expand_mask,
],
outputs=[gallery, meta_file],
)
demo.queue(concurrency_count=2).launch()
|