Spaces:
Runtime error
Runtime error
Make it Work
#3
by
Tristan
- opened
- README.md +37 -0
- app.py +113 -28
- collect.py +35 -19
- requirements.txt +6 -3
README.md
CHANGED
@@ -11,3 +11,40 @@ license: bigscience-bloom-rail-1.0
|
|
11 |
---
|
12 |
|
13 |
A basic example of dynamic adversarial data collection with a Gradio app.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
A basic example of dynamic adversarial data collection with a Gradio app.
|
14 |
+
|
15 |
+
**Instructions for someone to use for their own project:**
|
16 |
+
|
17 |
+
*Setting up the Space*
|
18 |
+
1. Clone this repo and deploy it on your own Hugging Face space.
|
19 |
+
2. Add one of your Hugging Face tokens to the secrets for your space, with the
|
20 |
+
name `HF_TOKEN`. Now, create an empty Hugging Face dataset on the hub. Put
|
21 |
+
the url of this dataset in the secrets for your space, with the name
|
22 |
+
`DATASET_REPO_URL`. It can be a private or public dataset. When you run this
|
23 |
+
space on mturk and when people visit your space on huggingface.co, the app
|
24 |
+
will use your token to automatically store new HITs in your dataset. NOTE:
|
25 |
+
if you push something to your dataset manually, you need to reboot your space
|
26 |
+
or it could get merge conflicts when trying to push HIT data.
|
27 |
+
|
28 |
+
*Running Data Collection*
|
29 |
+
1. On your local repo that you pulled, create a copy of `config.py.example`,
|
30 |
+
just called `config.py`. Now, put keys from your AWS account in `config.py`.
|
31 |
+
These keys should be for an AWS account that has the
|
32 |
+
AmazonMechanicalTurkFullAccess permission. You also need to
|
33 |
+
create an mturk requestor account associated with your AWS account.
|
34 |
+
2. Run `python collect.py` locally.
|
35 |
+
|
36 |
+
*Profit*
|
37 |
+
Now, you should be watching hits come into your Hugging Face dataset
|
38 |
+
automatically!
|
39 |
+
|
40 |
+
*Tips and Tricks*
|
41 |
+
- If you are developing and running this space locally to test it out, try
|
42 |
+
deleting the data directory that the app clones before running the app again.
|
43 |
+
Otherwise, the app could get merge conflicts when storing new HITs on the hub.
|
44 |
+
When you redeploy your app on Hugging Face spaces, the data directory is deleted
|
45 |
+
automatically.
|
46 |
+
- huggingface spaces have limited computational resources and memory. If you
|
47 |
+
run too many HITs and/or assignments at once, then you could encounter issues.
|
48 |
+
You could also encounter issues if you are trying to create a dataset that is
|
49 |
+
very large. Check the log of your space for any errors that could be happening.
|
50 |
+
|
app.py
CHANGED
@@ -1,13 +1,30 @@
|
|
1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
# using Gradio Blocks.
|
3 |
-
|
4 |
import random
|
5 |
from urllib.parse import parse_qs
|
6 |
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
from transformers import pipeline
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
pipe = pipeline("sentiment-analysis")
|
12 |
|
13 |
demo = gr.Blocks()
|
@@ -16,9 +33,9 @@ with demo:
|
|
16 |
total_cnt = 2 # How many examples per HIT
|
17 |
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
|
18 |
|
19 |
-
# We keep track of state as a
|
20 |
-
state_dict = {"assignmentId": "", "cnt": 0, "
|
21 |
-
state = gr.
|
22 |
|
23 |
gr.Markdown("# DADC in Gradio example")
|
24 |
gr.Markdown("Try to fool the model and find an example where it predicts the wrong label!")
|
@@ -27,26 +44,41 @@ with demo:
|
|
27 |
|
28 |
# Generate model prediction
|
29 |
# Default model: distilbert-base-uncased-finetuned-sst-2-english
|
30 |
-
def _predict(txt, tgt, state):
|
31 |
pred = pipe(txt)[0]
|
32 |
other_label = 'negative' if pred['label'].lower() == "positive" else "positive"
|
33 |
pred_confidences = {pred['label'].lower(): pred['score'], other_label: 1 - pred['score']}
|
34 |
|
35 |
pred["label"] = pred["label"].title()
|
36 |
ret = f"Target: **{tgt}**. Model prediction: **{pred['label']}**\n\n"
|
37 |
-
|
38 |
-
|
|
|
39 |
ret += " You fooled the model! Well done!"
|
40 |
else:
|
41 |
ret += " You did not fool the model! Too bad, try again!"
|
42 |
-
state["data"].append(ret)
|
43 |
state["cnt"] += 1
|
44 |
|
45 |
done = state["cnt"] == total_cnt
|
46 |
-
toggle_final_submit = gr.update(visible=done)
|
47 |
toggle_example_submit = gr.update(visible=not done)
|
48 |
-
new_state_md = f"State: {state['cnt']}/{total_cnt} ({state['
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Input fields
|
52 |
text_input = gr.Textbox(placeholder="Enter model-fooling statement", show_label=False)
|
@@ -59,28 +91,81 @@ with demo:
|
|
59 |
submit_ex_button = gr.Button("Submit")
|
60 |
with gr.Column(visible=False) as final_submit:
|
61 |
submit_hit_button = gr.Button("Submit HIT")
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Button event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
submit_ex_button.click(
|
74 |
_predict,
|
75 |
-
inputs=[text_input, label_input, state],
|
76 |
-
outputs=[label_output, text_output, state, example_submit, final_submit, state_display],
|
|
|
77 |
)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
submit_hit_button.click(
|
80 |
-
|
81 |
-
inputs=[state
|
82 |
-
outputs=
|
83 |
-
_js=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
)
|
85 |
|
86 |
-
demo.launch(
|
|
|
1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
# using Gradio Blocks.
|
3 |
+
import os
|
4 |
import random
|
5 |
from urllib.parse import parse_qs
|
6 |
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
from transformers import pipeline
|
10 |
+
from huggingface_hub import Repository
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from pathlib import Path
|
13 |
+
import json
|
14 |
+
from filelock import FileLock
|
15 |
+
|
16 |
+
# These variables are for storing the mturk HITs in a Hugging Face dataset.
|
17 |
+
if Path(".env").is_file():
|
18 |
+
load_dotenv(".env")
|
19 |
+
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
|
20 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
21 |
+
DATA_FILENAME = "data.jsonl"
|
22 |
+
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
23 |
+
repo = Repository(
|
24 |
+
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
25 |
+
)
|
26 |
+
|
27 |
+
# Now let's run the app!
|
28 |
pipe = pipeline("sentiment-analysis")
|
29 |
|
30 |
demo = gr.Blocks()
|
|
|
33 |
total_cnt = 2 # How many examples per HIT
|
34 |
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
|
35 |
|
36 |
+
# We keep track of state as a JSON
|
37 |
+
state_dict = {"assignmentId": "", "cnt": 0, "cnt_fooled": 0, "data": []}
|
38 |
+
state = gr.JSON(state_dict, visible=False)
|
39 |
|
40 |
gr.Markdown("# DADC in Gradio example")
|
41 |
gr.Markdown("Try to fool the model and find an example where it predicts the wrong label!")
|
|
|
44 |
|
45 |
# Generate model prediction
|
46 |
# Default model: distilbert-base-uncased-finetuned-sst-2-english
|
47 |
+
def _predict(txt, tgt, state, dummy):
|
48 |
pred = pipe(txt)[0]
|
49 |
other_label = 'negative' if pred['label'].lower() == "positive" else "positive"
|
50 |
pred_confidences = {pred['label'].lower(): pred['score'], other_label: 1 - pred['score']}
|
51 |
|
52 |
pred["label"] = pred["label"].title()
|
53 |
ret = f"Target: **{tgt}**. Model prediction: **{pred['label']}**\n\n"
|
54 |
+
fooled = pred["label"] != tgt
|
55 |
+
if fooled:
|
56 |
+
state["cnt_fooled"] += 1
|
57 |
ret += " You fooled the model! Well done!"
|
58 |
else:
|
59 |
ret += " You did not fool the model! Too bad, try again!"
|
|
|
60 |
state["cnt"] += 1
|
61 |
|
62 |
done = state["cnt"] == total_cnt
|
|
|
63 |
toggle_example_submit = gr.update(visible=not done)
|
64 |
+
new_state_md = f"State: {state['cnt']}/{total_cnt} ({state['cnt_fooled']} fooled)"
|
65 |
+
|
66 |
+
state["data"].append({"cnt": state["cnt"], "text": txt, "target": tgt.lower(), "model_pred": pred["label"].lower(), "fooled": fooled})
|
67 |
+
|
68 |
+
query = parse_qs(dummy[1:])
|
69 |
+
if "assignmentId" in query and query["assignmentId"][0] != "ASSIGNMENT_ID_NOT_AVAILABLE":
|
70 |
+
# It seems that someone is using this app on mturk. We need to
|
71 |
+
# store the assignmentId in the state before submit_hit_button
|
72 |
+
# is clicked. We can do this here in _predict. We need to save the
|
73 |
+
# assignmentId so that the turker can get credit for their HIT.
|
74 |
+
state["assignmentId"] = query["assignmentId"][0]
|
75 |
+
toggle_final_submit = gr.update(visible=done)
|
76 |
+
toggle_final_submit_preview = gr.update(visible=False)
|
77 |
+
else:
|
78 |
+
toggle_final_submit_preview = gr.update(visible=done)
|
79 |
+
toggle_final_submit = gr.update(visible=False)
|
80 |
+
|
81 |
+
return pred_confidences, ret, state, toggle_example_submit, toggle_final_submit, toggle_final_submit_preview, new_state_md, dummy
|
82 |
|
83 |
# Input fields
|
84 |
text_input = gr.Textbox(placeholder="Enter model-fooling statement", show_label=False)
|
|
|
91 |
submit_ex_button = gr.Button("Submit")
|
92 |
with gr.Column(visible=False) as final_submit:
|
93 |
submit_hit_button = gr.Button("Submit HIT")
|
94 |
+
with gr.Column(visible=False) as final_submit_preview:
|
95 |
+
submit_hit_button_preview = gr.Button("Submit Work (preview mode; no mturk HIT credit)")
|
96 |
+
|
97 |
+
# Store the HIT data into a Hugging Face dataset.
|
98 |
+
# The HIT is also stored and logged on mturk when post_hit_js is run below.
|
99 |
+
# This _store_in_huggingface_dataset function just demonstrates how easy it is
|
100 |
+
# to automatically create a Hugging Face dataset from mturk.
|
101 |
+
def _store_in_huggingface_dataset(state):
|
102 |
+
lock = FileLock(DATA_FILE + ".lock")
|
103 |
+
lock.acquire()
|
104 |
+
try:
|
105 |
+
with open(DATA_FILE, "a") as jsonlfile:
|
106 |
+
json_data_with_assignment_id =\
|
107 |
+
[json.dumps(dict({"assignmentId": state["assignmentId"]}, **datum)) for datum in state["data"]]
|
108 |
+
jsonlfile.write("\n".join(json_data_with_assignment_id) + "\n")
|
109 |
+
repo.push_to_hub()
|
110 |
+
finally:
|
111 |
+
lock.release()
|
112 |
+
return state
|
113 |
|
114 |
# Button event handlers
|
115 |
+
get_window_location_search_js = """
|
116 |
+
function(text_input, label_input, state, dummy) {
|
117 |
+
return [text_input, label_input, state, window.location.search];
|
118 |
+
}
|
119 |
+
"""
|
120 |
+
|
121 |
submit_ex_button.click(
|
122 |
_predict,
|
123 |
+
inputs=[text_input, label_input, state, dummy],
|
124 |
+
outputs=[label_output, text_output, state, example_submit, final_submit, final_submit_preview, state_display, dummy],
|
125 |
+
_js=get_window_location_search_js,
|
126 |
)
|
127 |
|
128 |
+
post_hit_js = """
|
129 |
+
function(state) {
|
130 |
+
// If there is an assignmentId, then the submitter is on mturk
|
131 |
+
// and has accepted the HIT. So, we need to submit their HIT.
|
132 |
+
const form = document.createElement('form');
|
133 |
+
form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit';
|
134 |
+
form.method = 'post';
|
135 |
+
for (const key in state) {
|
136 |
+
const hiddenField = document.createElement('input');
|
137 |
+
hiddenField.type = 'hidden';
|
138 |
+
hiddenField.name = key;
|
139 |
+
hiddenField.value = state[key];
|
140 |
+
form.appendChild(hiddenField);
|
141 |
+
};
|
142 |
+
document.body.appendChild(form);
|
143 |
+
form.submit();
|
144 |
+
return state;
|
145 |
+
}
|
146 |
+
"""
|
147 |
+
|
148 |
submit_hit_button.click(
|
149 |
+
_store_in_huggingface_dataset,
|
150 |
+
inputs=[state],
|
151 |
+
outputs=[state],
|
152 |
+
_js=post_hit_js,
|
153 |
+
)
|
154 |
+
|
155 |
+
refresh_app_js = """
|
156 |
+
function(state) {
|
157 |
+
// The following line here loads the app again so the user can
|
158 |
+
// enter in another preview-mode "HIT".
|
159 |
+
window.location.href = window.location.href;
|
160 |
+
return state;
|
161 |
+
}
|
162 |
+
"""
|
163 |
+
|
164 |
+
submit_hit_button_preview.click(
|
165 |
+
_store_in_huggingface_dataset,
|
166 |
+
inputs=[state],
|
167 |
+
outputs=[state],
|
168 |
+
_js=refresh_app_js,
|
169 |
)
|
170 |
|
171 |
+
demo.launch()
|
collect.py
CHANGED
@@ -5,36 +5,52 @@ import boto3
|
|
5 |
from boto.mturk.question import ExternalQuestion
|
6 |
|
7 |
from config import MTURK_KEY, MTURK_SECRET
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
mturk = boto3.client(
|
13 |
"mturk",
|
14 |
aws_access_key_id=MTURK_KEY,
|
15 |
aws_secret_access_key=MTURK_SECRET,
|
16 |
-
region_name=
|
17 |
-
endpoint_url=
|
18 |
)
|
19 |
|
20 |
-
#
|
21 |
-
question = ExternalQuestion(
|
22 |
-
|
23 |
)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
|
|
36 |
|
37 |
print(
|
38 |
-
"
|
39 |
+ new_hit["HIT"]["HITGroupId"]
|
40 |
)
|
|
|
|
5 |
from boto.mturk.question import ExternalQuestion
|
6 |
|
7 |
from config import MTURK_KEY, MTURK_SECRET
|
8 |
+
import argparse
|
9 |
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--mturk_region", default="us-east-1", help="The region for mturk (default: us-east-1)")
|
12 |
+
parser.add_argument("--space_name", default="Tristan/dadc", help="Name of the accompanying Hugging Face space (default: Tristan/dadc)")
|
13 |
+
parser.add_argument("--num_hits", type=int, default=5, help="The number of HITs.")
|
14 |
+
parser.add_argument("--num_assignments", type=int, default=1, help="The number of times that the HIT can be accepted and completed.")
|
15 |
+
parser.add_argument("--live_mode", action="store_true", help="""
|
16 |
+
Whether to run in live mode with real turkers. This will charge your account money.
|
17 |
+
If you don't use this flag, the HITs will be deployed on the sandbox version of mturk,
|
18 |
+
which will not charge your account money.
|
19 |
+
"""
|
20 |
+
)
|
21 |
+
|
22 |
+
args = parser.parse_args()
|
23 |
+
|
24 |
+
MTURK_URL = f"https://mturk-requester{'' if args.live_mode else '-sandbox'}.{args.mturk_region}.amazonaws.com"
|
25 |
|
26 |
mturk = boto3.client(
|
27 |
"mturk",
|
28 |
aws_access_key_id=MTURK_KEY,
|
29 |
aws_secret_access_key=MTURK_SECRET,
|
30 |
+
region_name=args.mturk_region,
|
31 |
+
endpoint_url=MTURK_URL,
|
32 |
)
|
33 |
|
34 |
+
# This is the URL that makes the space embeddable in an mturk iframe
|
35 |
+
question = ExternalQuestion(f"https://hf.space/embed/{args.space_name}/+?__theme=light",
|
36 |
+
frame_height=600
|
37 |
)
|
38 |
|
39 |
+
for i in range(args.num_hits):
|
40 |
+
new_hit = mturk.create_hit(
|
41 |
+
Title="Beat the AI",
|
42 |
+
Description="Try to fool an AI by creating examples that it gets wrong",
|
43 |
+
Keywords="fool the model",
|
44 |
+
Reward="0.15",
|
45 |
+
MaxAssignments=args.num_assignments,
|
46 |
+
LifetimeInSeconds=172800,
|
47 |
+
AssignmentDurationInSeconds=600,
|
48 |
+
AutoApprovalDelayInSeconds=14400,
|
49 |
+
Question=question.get_as_xml(),
|
50 |
+
)
|
51 |
|
52 |
print(
|
53 |
+
f"HIT Group Link: https://worker{'' if args.live_mode else 'sandbox'}.mturk.com/mturk/preview?groupId="
|
54 |
+ new_hit["HIT"]["HITGroupId"]
|
55 |
)
|
56 |
+
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
transformers==4.20.1
|
3 |
+
gradio==3.0.26
|
4 |
+
boto3==1.24.32
|
5 |
+
huggingface_hub==0.8.1
|
6 |
+
python-dotenv==0.20.0
|