mishig's picture
mishig HF staff
Update app.py
3806189
raw
history blame
5.09 kB
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
import gradio as gr
import torch
import base64
from io import BytesIO
from PIL import Image, ImageFilter
canvas_html = '<pose-maker/>'
load_js = """
async () => {
const url = "https://huggingface.co./datasets/mishig/gradio-components/raw/main/mannequinAll.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_image = """
async (canvas, prompt) => {
const poseMakerEl = document.querySelector("pose-maker");
const imgBase64 = poseMakerEl.captureScreenshot();
return [imgBase64, prompt]
}
"""
# Models
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe.enable_model_cpu_offload()
# xformers
pipe.enable_xformers_memory_efficient_attention()
# Generator seed,
generator = torch.manual_seed(0)
def generate_images(canvas, prompt):
try:
base64_img = canvas
image_data = base64.b64decode(base64_img.split(',')[1])
input_img = Image.open(BytesIO(image_data)).convert(
'RGB').resize((512, 512))
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=5))
output = pipe(
prompt,
input_img,
generator=generator,
num_images_per_prompt=2,
num_inference_steps=20,
)
all_outputs = []
for image in output.images:
all_outputs.append(image)
return all_outputs
except Exception as e:
raise gr.Error(str(e))
def placeholder_fn(axis):
pass
js_change_rotation_axis = """
async (axis) => {
const poseMakerEl = document.querySelector("pose-maker");
poseMakerEl.changeRotationAxis(axis);
}
"""
js_pose_template = """
async (pose) => {
const poseMakerEl = document.querySelector("pose-maker");
poseMakerEl.setPose(pose);
}
"""
with gr.Blocks() as blocks:
gr.HTML(
"""
<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
Pose in 3D & Render with ControlNet (SD-1.5)
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
Using <a href="https://github.com/lllyasviel/ControlNet">ControlNet</a> and <a href="https://boytchev.github.io/mannequin.js/">three.js/mannequin.js</a>
</p>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co./spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>
</div>
"""
)
with gr.Row():
with gr.Column():
canvas = gr.HTML(canvas_html, elem_id="canvas_html", visible=True)
with gr.Row():
rotation_axis = gr.Radio(["x", "y", "z"], value="x", label="Joint rotation axis")
pose_template = gr.Radio(["regular", "ballet", "handstand", "split", "kick", "chilling"], value="regular", label="Pose template")
prompt = gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="best quality, extremely detailed",
)
run_button = gr.Button("Generate")
with gr.Column():
gallery = gr.Gallery().style(grid=[2], height="auto")
rotation_axis.change(fn=placeholder_fn,
inputs=[rotation_axis],
outputs=[],
queue=False,
_js=js_change_rotation_axis)
pose_template.change(fn=placeholder_fn,
inputs=[pose_template],
outputs=[],
queue=False,
_js=js_pose_template)
run_button.click(fn=generate_images,
inputs=[canvas, prompt],
outputs=[gallery],
_js=get_js_image)
blocks.load(None, None, None, _js=load_js)
blocks.launch(debug=True)