Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
-
from controlnet_aux import OpenposeDetector
|
2 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
3 |
from diffusers import UniPCMultistepScheduler
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
canvas_html =
|
11 |
load_js = """
|
12 |
async () => {
|
13 |
-
const url = "https://huggingface.co/datasets/
|
14 |
fetch(url)
|
15 |
.then(res => res.text())
|
16 |
.then(text => {
|
@@ -21,22 +20,18 @@ async () => {
|
|
21 |
});
|
22 |
}
|
23 |
"""
|
|
|
24 |
get_js_image = """
|
25 |
-
async (
|
26 |
-
const
|
27 |
-
const
|
28 |
-
return [
|
29 |
}
|
30 |
"""
|
31 |
|
32 |
-
# Constants
|
33 |
-
low_threshold = 100
|
34 |
-
high_threshold = 200
|
35 |
-
|
36 |
# Models
|
37 |
-
pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
38 |
controlnet = ControlNetModel.from_pretrained(
|
39 |
-
"lllyasviel/sd-controlnet-
|
40 |
)
|
41 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
42 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
@@ -54,62 +49,73 @@ pipe.enable_xformers_memory_efficient_attention()
|
|
54 |
generator = torch.manual_seed(0)
|
55 |
|
56 |
|
57 |
-
def
|
58 |
-
return pose_model(image)
|
59 |
-
|
60 |
-
|
61 |
-
def generate_images(image, prompt, image_file_live_opt='file', live_conditioning=None):
|
62 |
-
if image is None and 'image' not in live_conditioning:
|
63 |
-
raise gr.Error("Please provide an image")
|
64 |
try:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
pose = Image.open(BytesIO(image_data)).convert(
|
71 |
-
'RGB').resize((512, 512))
|
72 |
output = pipe(
|
73 |
prompt,
|
74 |
-
|
75 |
generator=generator,
|
76 |
-
num_images_per_prompt=
|
77 |
num_inference_steps=20,
|
78 |
)
|
79 |
all_outputs = []
|
80 |
-
all_outputs.append(pose)
|
81 |
for image in output.images:
|
82 |
all_outputs.append(image)
|
83 |
return all_outputs
|
84 |
except Exception as e:
|
85 |
raise gr.Error(str(e))
|
86 |
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
with gr.Blocks() as blocks:
|
96 |
-
gr.
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
with gr.Row():
|
102 |
-
live_conditioning = gr.JSON(value={}, visible=False)
|
103 |
with gr.Column():
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
image_file_live_opt.change(fn=toggle,
|
110 |
-
inputs=[image_file_live_opt],
|
111 |
-
outputs=[image_in_img, canvas],
|
112 |
-
queue=False)
|
113 |
prompt = gr.Textbox(
|
114 |
label="Enter your prompt",
|
115 |
max_lines=1,
|
@@ -118,20 +124,20 @@ with gr.Blocks() as blocks:
|
|
118 |
run_button = gr.Button("Generate")
|
119 |
with gr.Column():
|
120 |
gallery = gr.Gallery().style(grid=[2], height="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
run_button.click(fn=generate_images,
|
122 |
-
inputs=[
|
123 |
-
image_file_live_opt, live_conditioning],
|
124 |
outputs=[gallery],
|
125 |
_js=get_js_image)
|
126 |
blocks.load(None, None, None, _js=load_js)
|
127 |
|
128 |
-
gr.Examples(fn=generate_images,
|
129 |
-
examples=[
|
130 |
-
["./yoga1.jpeg",
|
131 |
-
"best quality, extremely detailed"]
|
132 |
-
],
|
133 |
-
inputs=[image_in_img, prompt],
|
134 |
-
outputs=[gallery],
|
135 |
-
cache_examples=True)
|
136 |
-
|
137 |
blocks.launch(debug=True)
|
|
|
|
|
1 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
2 |
from diffusers import UniPCMultistepScheduler
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import base64
|
6 |
from io import BytesIO
|
7 |
+
from PIL import Image, ImageFilter
|
8 |
+
|
9 |
+
canvas_html = '<pose-maker/>'
|
10 |
load_js = """
|
11 |
async () => {
|
12 |
+
const url = "https://huggingface.co/datasets/mishig/gradio-components/raw/main/mannequinAll.js"
|
13 |
fetch(url)
|
14 |
.then(res => res.text())
|
15 |
.then(text => {
|
|
|
20 |
});
|
21 |
}
|
22 |
"""
|
23 |
+
|
24 |
get_js_image = """
|
25 |
+
async (canvas, prompt) => {
|
26 |
+
const poseMakerEl = document.querySelector("pose-maker");
|
27 |
+
const imgBase64 = poseMakerEl.captureScreenshot();
|
28 |
+
return [imgBase64, prompt]
|
29 |
}
|
30 |
"""
|
31 |
|
|
|
|
|
|
|
|
|
32 |
# Models
|
|
|
33 |
controlnet = ControlNetModel.from_pretrained(
|
34 |
+
"lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
|
35 |
)
|
36 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
37 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
|
|
49 |
generator = torch.manual_seed(0)
|
50 |
|
51 |
|
52 |
+
def generate_images(canvas, prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
try:
|
54 |
+
base64_img = canvas
|
55 |
+
image_data = base64.b64decode(base64_img.split(',')[1])
|
56 |
+
input_img = Image.open(BytesIO(image_data)).convert(
|
57 |
+
'RGB').resize((512, 512))
|
58 |
+
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=5))
|
|
|
|
|
59 |
output = pipe(
|
60 |
prompt,
|
61 |
+
input_img,
|
62 |
generator=generator,
|
63 |
+
num_images_per_prompt=2,
|
64 |
num_inference_steps=20,
|
65 |
)
|
66 |
all_outputs = []
|
|
|
67 |
for image in output.images:
|
68 |
all_outputs.append(image)
|
69 |
return all_outputs
|
70 |
except Exception as e:
|
71 |
raise gr.Error(str(e))
|
72 |
|
73 |
+
def placeholder_fn(axis):
|
74 |
+
pass
|
75 |
|
76 |
+
js_change_rotation_axis = """
|
77 |
+
async (axis) => {
|
78 |
+
const poseMakerEl = document.querySelector("pose-maker");
|
79 |
+
poseMakerEl.changeRotationAxis(axis);
|
80 |
+
}
|
81 |
+
"""
|
82 |
|
83 |
+
js_pose_template = """
|
84 |
+
async (pose) => {
|
85 |
+
const poseMakerEl = document.querySelector("pose-maker");
|
86 |
+
poseMakerEl.setPose(pose);
|
87 |
+
}
|
88 |
+
"""
|
89 |
|
90 |
with gr.Blocks() as blocks:
|
91 |
+
gr.HTML(
|
92 |
+
"""
|
93 |
+
<div style="text-align: center; margin: 0 auto;">
|
94 |
+
<div
|
95 |
+
style="
|
96 |
+
display: inline-flex;
|
97 |
+
align-items: center;
|
98 |
+
gap: 0.8rem;
|
99 |
+
font-size: 1.75rem;
|
100 |
+
"
|
101 |
+
>
|
102 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
|
103 |
+
Pose in 3D & Render with ControlNet (SD-1.5)
|
104 |
+
</h1>
|
105 |
+
</div>
|
106 |
+
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
|
107 |
+
Using <a href="https://github.com/lllyasviel/ControlNet">ControlNet</a> and <a href="https://boytchev.github.io/mannequin.js/">three.js/mannequin.js</a>
|
108 |
+
</p>
|
109 |
+
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>
|
110 |
+
</div>
|
111 |
+
"""
|
112 |
+
)
|
113 |
with gr.Row():
|
|
|
114 |
with gr.Column():
|
115 |
+
canvas = gr.HTML(canvas_html, elem_id="canvas_html", visible=True)
|
116 |
+
with gr.Row():
|
117 |
+
rotation_axis = gr.Radio(["x", "y", "z"], value="x", label="Joint rotation axis")
|
118 |
+
pose_template = gr.Radio(["regular", "ballet", "handstand", "split", "kick", "chilling"], value="regular", label="Pose template")
|
|
|
|
|
|
|
|
|
|
|
119 |
prompt = gr.Textbox(
|
120 |
label="Enter your prompt",
|
121 |
max_lines=1,
|
|
|
124 |
run_button = gr.Button("Generate")
|
125 |
with gr.Column():
|
126 |
gallery = gr.Gallery().style(grid=[2], height="auto")
|
127 |
+
rotation_axis.change(fn=placeholder_fn,
|
128 |
+
inputs=[rotation_axis],
|
129 |
+
outputs=[],
|
130 |
+
queue=False,
|
131 |
+
_js=js_change_rotation_axis)
|
132 |
+
pose_template.change(fn=placeholder_fn,
|
133 |
+
inputs=[pose_template],
|
134 |
+
outputs=[],
|
135 |
+
queue=False,
|
136 |
+
_js=js_pose_template)
|
137 |
run_button.click(fn=generate_images,
|
138 |
+
inputs=[canvas, prompt],
|
|
|
139 |
outputs=[gallery],
|
140 |
_js=get_js_image)
|
141 |
blocks.load(None, None, None, _js=load_js)
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
blocks.launch(debug=True)
|