|
import gradio as gr |
|
import joblib |
|
import numpy as np |
|
import pandas as pd |
|
from huggingface_hub import hf_hub_download |
|
from sklearn.preprocessing import StandardScaler, LabelEncoder |
|
|
|
REPO_ID = "Hemg/modelxxx" |
|
MoDEL_FILENAME = "studentpredict.joblib" |
|
SCALER_FILENAME = "studentscaler.joblib" |
|
|
|
model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME)) |
|
scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME)) |
|
|
|
def encode_categorical_columns(df): |
|
label_encoder = LabelEncoder() |
|
ordinal_columns = df.select_dtypes(include=['object']).columns |
|
|
|
for col in ordinal_columns: |
|
df[col] = label_encoder.fit_transform(df[col]) |
|
|
|
nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns) |
|
df = pd.get_dummies(df, columns=nominal_columns, drop_first=True) |
|
|
|
return df |
|
|
|
def predict_performance(Location, College_Fee, College, GPA, Year, Course_Interested, Faculty, Source, |
|
Visited_College_for_Inquiry_Only, Event, Attended_Any_Events, |
|
Presenter, Visited_Parents): |
|
try: |
|
input_data = [[Location, College_Fee, College, GPA, Year, Course_Interested, Faculty, Source, |
|
Visited_College_for_Inquiry_Only, Event, Attended_Any_Events, |
|
Presenter, Visited_Parents]] |
|
|
|
feature_names = ["Location", "College Fee", "College", "GPA", "Year", "Course Interested", |
|
"Faculty", "Source", "Visited College for Inquiry Only", "Event", |
|
"Attended Any Events", "Presenter", "Visited Parents"] |
|
|
|
input_df = pd.DataFrame(input_data, columns=feature_names) |
|
df = encode_categorical_columns(input_df) |
|
df = df.reindex(columns=scaler.feature_names_in_, fill_value=0) |
|
scaled_input = scaler.transform(df) |
|
|
|
|
|
probabilities = model.predict_proba(scaled_input)[0] |
|
|
|
admission_probability = probabilities[1] |
|
|
|
|
|
admission_probability = np.clip(admission_probability, 0, 1) |
|
|
|
|
|
prediction_percentage = admission_probability * 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
html_template = """ |
|
<div style='text-align: center; padding: 20px;'> |
|
<div style='{style}'> |
|
{message} |
|
</div> |
|
</div> |
|
""" |
|
|
|
|
|
if prediction_percentage > 50: |
|
style = "font-family: Arial, sans-serif; font-size: 32px; color: #28a745; font-weight: bold;" |
|
message = "High chance of admission" |
|
elif prediction_percentage < 50: |
|
style = "font-family: Arial, sans-serif; font-size: 32px; color: #dc3545; font-weight: bold; text-transform: uppercase;" |
|
message = "Lower chance of admission" |
|
else: |
|
style = "font-family: Arial, sans-serif; font-size: 32px; color: #ffc107; font-weight: bold;" |
|
message = "Moderate chance of admission" |
|
|
|
return html_template.format(prediction_percentage, style=style, message=message) |
|
|
|
except Exception as e: |
|
return f"<div style='color: red; font-family: Arial, sans-serif;'>Error in prediction: {str(e)}</div>" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_performance, |
|
inputs=[ |
|
gr.Radio(["Kathmandu", "Bhaktapur", "Lalitpur", "Kritipur"], label="Location",info="What is your current location?"), |
|
gr.Slider(minimum=1000000, maximum=1700000,step=100000,label="College Fee", info="What 's the the total bachelor fee for the course you want to enroll?"), |
|
gr.Radio(["Trinity", "CCRC", "KMC", "SOS", "ISMT", "St. Xavier's", "Everest", "Prime"], label="College", info="What is the name of the last college you attended?"), |
|
gr.Slider(minimum=2, maximum=3, label="GPA", info="What is your GPA (Grade Point Average) of +2 ?"), |
|
gr.Slider(minimum=2024, maximum=2026, step=1, label="Year", info="What is your intended year of admission?"), |
|
|
|
gr.Radio(["MSc IT & Applied Security", "BSc (Hons) Computing", "BSc (Hons) Computing with Artificial Intelligence", |
|
"BSc (Hons) Computer Networking & IT Security", "BSc (Hons) Multimedia Technologies", "MBA", |
|
"BA (Hons) Accounting & Finance", "BA (Hons) Business Administration"], label="Course_Interested", info="Which course are you most interested in?"), |
|
gr.Radio(["Science", "Management", "Humanities"], label="Faculty", info="what is your last stream ?"), |
|
gr.Radio(["Event", "Facebook", "Instagram", "Offline", "Recommendation"], label="Source",info="How did you first hear about this college?"), |
|
gr.Radio(["Yes", "No"], label="visited_college_for_inquery_only", info="Have you visited the college you're interested in for an inquiry or consultation?"), |
|
gr.Radio(["Yes", "No"], label="attended_any_event", info="Have you attended any events organized by the college you're interested in?"), |
|
gr.Radio(["New Year", "Dashain", "Orientation", "Fresher's Party", "Holi Festival", "Welcome Ceremony"], |
|
label="attended_event_name", info="If yes, which events did you attend?" ), |
|
gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"], label="Presenter", info="who is the counser that help you while in counseling?"), |
|
gr.Radio(["Yes", "No"], label="visited_with_parents", info="Did you visit the college with your parents?") |
|
], |
|
|
|
|
|
|
|
outputs=gr.HTML(), |
|
title="Student Admission Prediction", |
|
description="Predict the probability of student admission", |
|
css="body { font-family: Arial, sans-serif; }" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch(share=True) |