ingtech commited on
Commit
1013508
·
verified ·
1 Parent(s): f97b2f4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +123 -0
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ import numpy as np
4
+ import pandas as pd
5
+ from huggingface_hub import hf_hub_download
6
+ from sklearn.preprocessing import StandardScaler, LabelEncoder
7
+
8
+ REPO_ID = "Hemg/modelxxx"
9
+ MoDEL_FILENAME = "studentpredict.joblib"
10
+ SCALER_FILENAME = "studentscaler.joblib"
11
+
12
+ model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME))
13
+ scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME))
14
+
15
+ def encode_categorical_columns(df):
16
+ label_encoder = LabelEncoder()
17
+ ordinal_columns = df.select_dtypes(include=['object']).columns
18
+
19
+ for col in ordinal_columns:
20
+ df[col] = label_encoder.fit_transform(df[col])
21
+
22
+ nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns)
23
+ df = pd.get_dummies(df, columns=nominal_columns, drop_first=True)
24
+
25
+ return df
26
+
27
+ def predict_performance(Location, College_Fee, College, GPA, Year, Course_Interested, Faculty, Source,
28
+ Visited_College_for_Inquiry_Only, Event, Attended_Any_Events,
29
+ Presenter, Visited_Parents):
30
+ try:
31
+ input_data = [[Location, College_Fee, College, GPA, Year, Course_Interested, Faculty, Source,
32
+ Visited_College_for_Inquiry_Only, Event, Attended_Any_Events,
33
+ Presenter, Visited_Parents]]
34
+
35
+ feature_names = ["Location", "College Fee", "College", "GPA", "Year", "Course Interested",
36
+ "Faculty", "Source", "Visited College for Inquiry Only", "Event",
37
+ "Attended Any Events", "Presenter", "Visited Parents"]
38
+
39
+ input_df = pd.DataFrame(input_data, columns=feature_names)
40
+ df = encode_categorical_columns(input_df)
41
+ df = df.reindex(columns=scaler.feature_names_in_, fill_value=0)
42
+ scaled_input = scaler.transform(df)
43
+
44
+ # Get probability prediction
45
+ probabilities = model.predict_proba(scaled_input)[0]
46
+ # Take the probability of positive class (usually index 1)
47
+ admission_probability = probabilities[1]
48
+
49
+ # Ensure the probability is between 0 and 1
50
+ admission_probability = np.clip(admission_probability, 0, 1)
51
+
52
+ # Convert to percentage
53
+ prediction_percentage = admission_probability * 100
54
+
55
+ # Create styled HTML output
56
+ # html_template = """
57
+ # <div style='text-align: center; padding: 20px;'>
58
+ # <div style='font-family: Arial, sans-serif; font-size: 24px; margin-bottom: 15px;'>
59
+ # Admission Probability: <span style='font-weight: bold;'>{:.1f}%</span>
60
+ # </div>
61
+ # <div style='{style}'>
62
+ # {message}
63
+ # </div>
64
+ # </div>
65
+ # """
66
+ # Create styled HTML output
67
+ html_template = """
68
+ <div style='text-align: center; padding: 20px;'>
69
+ <div style='{style}'>
70
+ {message}
71
+ </div>
72
+ </div>
73
+ """
74
+
75
+
76
+ if prediction_percentage > 50:
77
+ style = "font-family: Arial, sans-serif; font-size: 32px; color: #28a745; font-weight: bold;"
78
+ message = "High chance of admission"
79
+ elif prediction_percentage < 50:
80
+ style = "font-family: Arial, sans-serif; font-size: 32px; color: #dc3545; font-weight: bold; text-transform: uppercase;"
81
+ message = "Lower chance of admission"
82
+ else: # exactly 50
83
+ style = "font-family: Arial, sans-serif; font-size: 32px; color: #ffc107; font-weight: bold;"
84
+ message = "Moderate chance of admission"
85
+
86
+ return html_template.format(prediction_percentage, style=style, message=message)
87
+
88
+ except Exception as e:
89
+ return f"<div style='color: red; font-family: Arial, sans-serif;'>Error in prediction: {str(e)}</div>"
90
+
91
+ # Update the Gradio interface
92
+ iface = gr.Interface(
93
+ fn=predict_performance,
94
+ inputs=[
95
+ gr.Radio(["Kathmandu", "Bhaktapur", "Lalitpur", "Kritipur"], label="Location",info="What is your current location?"),
96
+ gr.Slider(minimum=1000000, maximum=1700000,step=100000,label="College Fee", info="What 's the the total bachelor fee for the course you want to enroll?"),
97
+ gr.Radio(["Trinity", "CCRC", "KMC", "SOS", "ISMT", "St. Xavier's", "Everest", "Prime"], label="College", info="What is the name of the last college you attended?"),
98
+ gr.Slider(minimum=2, maximum=3, label="GPA", info="What is your GPA (Grade Point Average) of +2 ?"),
99
+ gr.Slider(minimum=2024, maximum=2026, step=1, label="Year", info="What is your intended year of admission?"),
100
+ #gr.Radio([2024, 2025, 2026], label="Year", info="What is your intended year of admission?")
101
+ gr.Radio(["MSc IT & Applied Security", "BSc (Hons) Computing", "BSc (Hons) Computing with Artificial Intelligence",
102
+ "BSc (Hons) Computer Networking & IT Security", "BSc (Hons) Multimedia Technologies", "MBA",
103
+ "BA (Hons) Accounting & Finance", "BA (Hons) Business Administration"], label="Course_Interested", info="Which course are you most interested in?"),
104
+ gr.Radio(["Science", "Management", "Humanities"], label="Faculty", info="what is your last stream ?"),
105
+ gr.Radio(["Event", "Facebook", "Instagram", "Offline", "Recommendation"], label="Source",info="How did you first hear about this college?"),
106
+ gr.Radio(["Yes", "No"], label="visited_college_for_inquery_only", info="Have you visited the college you're interested in for an inquiry or consultation?"),
107
+ gr.Radio(["Yes", "No"], label="attended_any_event", info="Have you attended any events organized by the college you're interested in?"),
108
+ gr.Radio(["New Year", "Dashain", "Orientation", "Fresher's Party", "Holi Festival", "Welcome Ceremony"],
109
+ label="attended_event_name", info="If yes, which events did you attend?" ),
110
+ gr.Radio(["Ram", "Gita", "Manish", "Shyam", "Raj", "Hari", "Rina", "Shree"], label="Presenter", info="who is the counser that help you while in counseling?"),
111
+ gr.Radio(["Yes", "No"], label="visited_with_parents", info="Did you visit the college with your parents?")
112
+ ],
113
+
114
+
115
+
116
+ outputs=gr.HTML(), # Changed to HTML output
117
+ title="Student Admission Prediction",
118
+ description="Predict the probability of student admission",
119
+ css="body { font-family: Arial, sans-serif; }"
120
+ )
121
+
122
+ if __name__ == "__main__":
123
+ iface.launch(share=True)