Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (2025) Bytedance Ltd. and/or its affiliates | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
def compute_scale_and_shift(prediction, target, mask, scale_only=False): | |
if scale_only: | |
return compute_scale(prediction, target, mask), 0 | |
else: | |
return compute_scale_and_shift_full(prediction, target, mask) | |
def compute_scale(prediction, target, mask): | |
# system matrix: A = [[a_00, a_01], [a_10, a_11]] | |
prediction = prediction.astype(np.float32) | |
target = target.astype(np.float32) | |
mask = mask.astype(np.float32) | |
a_00 = np.sum(mask * prediction * prediction) | |
a_01 = np.sum(mask * prediction) | |
a_11 = np.sum(mask) | |
# right hand side: b = [b_0, b_1] | |
b_0 = np.sum(mask * prediction * target) | |
x_0 = b_0 / (a_00 + 1e-6) | |
return x_0 | |
def compute_scale_and_shift_full(prediction, target, mask): | |
# system matrix: A = [[a_00, a_01], [a_10, a_11]] | |
prediction = prediction.astype(np.float32) | |
target = target.astype(np.float32) | |
mask = mask.astype(np.float32) | |
a_00 = np.sum(mask * prediction * prediction) | |
a_01 = np.sum(mask * prediction) | |
a_11 = np.sum(mask) | |
b_0 = np.sum(mask * prediction * target) | |
b_1 = np.sum(mask * target) | |
x_0 = 1 | |
x_1 = 0 | |
det = a_00 * a_11 - a_01 * a_01 | |
if det != 0: | |
x_0 = (a_11 * b_0 - a_01 * b_1) / det | |
x_1 = (-a_01 * b_0 + a_00 * b_1) / det | |
return x_0, x_1 | |
def get_interpolate_frames(frame_list_pre, frame_list_post): | |
assert len(frame_list_pre) == len(frame_list_post) | |
min_w = 0.0 | |
max_w = 1.0 | |
step = (max_w - min_w) / (len(frame_list_pre)-1) | |
post_w_list = [min_w] + [i * step for i in range(1,len(frame_list_pre)-1)] + [max_w] | |
interpolated_frames = [] | |
for i in range(len(frame_list_pre)): | |
interpolated_frames.append(frame_list_pre[i] * (1-post_w_list[i]) + frame_list_post[i] * post_w_list[i]) | |
return interpolated_frames |