File size: 2,449 Bytes
55ac26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (2025) Bytedance Ltd. and/or its affiliates 

# Licensed under the Apache License, Version 2.0 (the "License"); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 

#     http://www.apache.org/licenses/LICENSE-2.0 

# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
import numpy as np

def compute_scale_and_shift(prediction, target, mask, scale_only=False):
    if scale_only:
        return compute_scale(prediction, target, mask), 0
    else:
        return compute_scale_and_shift_full(prediction, target, mask)


def compute_scale(prediction, target, mask):
    # system matrix: A = [[a_00, a_01], [a_10, a_11]]
    prediction = prediction.astype(np.float32)
    target = target.astype(np.float32)
    mask = mask.astype(np.float32)

    a_00 = np.sum(mask * prediction * prediction)
    a_01 = np.sum(mask * prediction)
    a_11 = np.sum(mask)

    # right hand side: b = [b_0, b_1]
    b_0 = np.sum(mask * prediction * target)

    x_0 = b_0 / (a_00 + 1e-6)

    return x_0

def compute_scale_and_shift_full(prediction, target, mask):
    # system matrix: A = [[a_00, a_01], [a_10, a_11]]
    prediction = prediction.astype(np.float32)
    target = target.astype(np.float32)
    mask = mask.astype(np.float32)

    a_00 = np.sum(mask * prediction * prediction)
    a_01 = np.sum(mask * prediction)
    a_11 = np.sum(mask)

    b_0 = np.sum(mask * prediction * target)
    b_1 = np.sum(mask * target)

    x_0 = 1
    x_1 = 0

    det = a_00 * a_11 - a_01 * a_01

    if det != 0:
        x_0 = (a_11 * b_0 - a_01 * b_1) / det
        x_1 = (-a_01 * b_0 + a_00 * b_1) / det

    return x_0, x_1


def get_interpolate_frames(frame_list_pre, frame_list_post):
    assert len(frame_list_pre) == len(frame_list_post)
    min_w = 0.0
    max_w = 1.0
    step = (max_w - min_w) / (len(frame_list_pre)-1)
    post_w_list = [min_w] + [i * step for i in range(1,len(frame_list_pre)-1)] + [max_w]
    interpolated_frames = []
    for i in range(len(frame_list_pre)):
        interpolated_frames.append(frame_list_pre[i] * (1-post_w_list[i]) + frame_list_post[i] * post_w_list[i])
    return interpolated_frames