davanstrien's picture
davanstrien HF staff
Create app.py
c52dd43 verified
raw
history blame
2.46 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer")
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer")
def parse_pred(pred):
"""Extract the list of instruction-response pairs from the prediction"""
QA_str_list = pred.split('</END>')
if not pred.endswith('</END>'):
QA_str_list = QA_str_list[:-1]
QA_list = []
raw_questions = []
for QA_str in QA_str_list:
try:
assert len(QA_str.split('<ANS>')) == 2, f'invalid QA string: {QA_str}'
Q_str, A_str = QA_str.split('<ANS>')
Q_str, A_str = Q_str.strip(), A_str.strip()
assert Q_str.startswith('<QUE>'), f'invalid question string: {Q_str} in QA_str: {QA_str}'
assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}'
Q_str = Q_str.replace('<QUE>', '').strip()
assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}'
QA_list.append({'Q': Q_str, 'A': A_str})
raw_questions.append(Q_str.lower())
except:
pass
return QA_list
def get_instruction_response_pairs(context):
'''Prompt the synthesizer to generate instruction-response pairs based on the given context'''
prompt = f'<s> <CON> {context} </CON>\n\n'
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device)
outputs = model.generate(input_ids=inputs, max_new_tokens=400, do_sample=False)[0]
pred_start = int(inputs.shape[-1])
pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True)
return parse_pred(pred)
def generate_pairs(context):
instruction_response_pairs = get_instruction_response_pairs(context)
output = ""
for index, pair in enumerate(instruction_response_pairs):
output += f"## Instruction {index + 1}:\n{pair['Q']}\n## Response {index + 1}:\n{pair['A']}\n\n"
return output
# Create Gradio interface
iface = gr.Interface(
fn=generate_pairs,
inputs=gr.Textbox(lines=5, label="Enter context here"),
outputs=gr.Textbox(lines=20, label="Generated Instruction-Response Pairs"),
title="Instruction-Response Pair Generator",
description="Enter a context, and the model will generate relevant instruction-response pairs."
)
# Launch the interface
iface.launch()