Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer") | |
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer") | |
def parse_pred(pred): | |
"""Extract the list of instruction-response pairs from the prediction""" | |
QA_str_list = pred.split('</END>') | |
if not pred.endswith('</END>'): | |
QA_str_list = QA_str_list[:-1] | |
QA_list = [] | |
raw_questions = [] | |
for QA_str in QA_str_list: | |
try: | |
assert len(QA_str.split('<ANS>')) == 2, f'invalid QA string: {QA_str}' | |
Q_str, A_str = QA_str.split('<ANS>') | |
Q_str, A_str = Q_str.strip(), A_str.strip() | |
assert Q_str.startswith('<QUE>'), f'invalid question string: {Q_str} in QA_str: {QA_str}' | |
assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}' | |
Q_str = Q_str.replace('<QUE>', '').strip() | |
assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}' | |
QA_list.append({'Q': Q_str, 'A': A_str}) | |
raw_questions.append(Q_str.lower()) | |
except: | |
pass | |
return QA_list | |
def get_instruction_response_pairs(context): | |
'''Prompt the synthesizer to generate instruction-response pairs based on the given context''' | |
prompt = f'<s> <CON> {context} </CON>\n\n' | |
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device) | |
outputs = model.generate(input_ids=inputs, max_new_tokens=400, do_sample=False)[0] | |
pred_start = int(inputs.shape[-1]) | |
pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True) | |
return parse_pred(pred) | |
def generate_pairs(context): | |
instruction_response_pairs = get_instruction_response_pairs(context) | |
output = "" | |
for index, pair in enumerate(instruction_response_pairs): | |
output += f"## Instruction {index + 1}:\n{pair['Q']}\n## Response {index + 1}:\n{pair['A']}\n\n" | |
return output | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_pairs, | |
inputs=gr.Textbox(lines=5, label="Enter context here"), | |
outputs=gr.Textbox(lines=20, label="Generated Instruction-Response Pairs"), | |
title="Instruction-Response Pair Generator", | |
description="Enter a context, and the model will generate relevant instruction-response pairs." | |
) | |
# Launch the interface | |
iface.launch() |