Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer")
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer")
|
6 |
+
|
7 |
+
def parse_pred(pred):
|
8 |
+
"""Extract the list of instruction-response pairs from the prediction"""
|
9 |
+
QA_str_list = pred.split('</END>')
|
10 |
+
if not pred.endswith('</END>'):
|
11 |
+
QA_str_list = QA_str_list[:-1]
|
12 |
+
|
13 |
+
QA_list = []
|
14 |
+
raw_questions = []
|
15 |
+
for QA_str in QA_str_list:
|
16 |
+
try:
|
17 |
+
assert len(QA_str.split('<ANS>')) == 2, f'invalid QA string: {QA_str}'
|
18 |
+
Q_str, A_str = QA_str.split('<ANS>')
|
19 |
+
Q_str, A_str = Q_str.strip(), A_str.strip()
|
20 |
+
assert Q_str.startswith('<QUE>'), f'invalid question string: {Q_str} in QA_str: {QA_str}'
|
21 |
+
assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}'
|
22 |
+
Q_str = Q_str.replace('<QUE>', '').strip()
|
23 |
+
assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}'
|
24 |
+
QA_list.append({'Q': Q_str, 'A': A_str})
|
25 |
+
raw_questions.append(Q_str.lower())
|
26 |
+
except:
|
27 |
+
pass
|
28 |
+
|
29 |
+
return QA_list
|
30 |
+
|
31 |
+
|
32 |
+
def get_instruction_response_pairs(context):
|
33 |
+
'''Prompt the synthesizer to generate instruction-response pairs based on the given context'''
|
34 |
+
prompt = f'<s> <CON> {context} </CON>\n\n'
|
35 |
+
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device)
|
36 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=400, do_sample=False)[0]
|
37 |
+
|
38 |
+
pred_start = int(inputs.shape[-1])
|
39 |
+
pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True)
|
40 |
+
return parse_pred(pred)
|
41 |
+
|
42 |
+
def generate_pairs(context):
|
43 |
+
instruction_response_pairs = get_instruction_response_pairs(context)
|
44 |
+
output = ""
|
45 |
+
for index, pair in enumerate(instruction_response_pairs):
|
46 |
+
output += f"## Instruction {index + 1}:\n{pair['Q']}\n## Response {index + 1}:\n{pair['A']}\n\n"
|
47 |
+
return output
|
48 |
+
|
49 |
+
# Create Gradio interface
|
50 |
+
iface = gr.Interface(
|
51 |
+
fn=generate_pairs,
|
52 |
+
inputs=gr.Textbox(lines=5, label="Enter context here"),
|
53 |
+
outputs=gr.Textbox(lines=20, label="Generated Instruction-Response Pairs"),
|
54 |
+
title="Instruction-Response Pair Generator",
|
55 |
+
description="Enter a context, and the model will generate relevant instruction-response pairs."
|
56 |
+
)
|
57 |
+
|
58 |
+
# Launch the interface
|
59 |
+
iface.launch()
|