CSSEDGE / testeddata /WRONG_Question.py
danish003's picture
Initial commit with app files
6dc0e95
raw
history blame
5.25 kB
# Importing dependencies
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from transformers import pipeline
from htmlTemplates import css, bot_template, user_template
# Load environment variables
load_dotenv()
# Creating custom template to guide LLM model
custom_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question, in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
# Extracting text from PDF
def get_pdf_text(docs):
text = ""
for pdf in docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Converting text to chunks
def get_chunks(raw_text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(raw_text)
return chunks
# Using Hugging Face embeddings model and FAISS to create vectorstore
def get_vectorstore(chunks):
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'}
)
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
return vectorstore
# Generating conversation chain with improved out-of-scope handling
def get_conversationchain(vectorstore):
# Use a Hugging Face model for question-answering
model_name = "distilbert-base-uncased-distilled-squad" # Pretrained QA model
qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name)
def qa_function(question, context):
response = qa_pipeline(question=question, context=context)
return response['answer'], response['score']
memory = ConversationBufferMemory(
memory_key='chat_history',
return_messages=True,
output_key='answer'
)
def conversation_chain(inputs):
question = inputs['question']
# Extract text content from Document objects
documents = vectorstore.similarity_search(question, k=5)
# If no similar documents are found or similarity is too low
if not documents:
answer = "Sorry, I couldn't find relevant information in the document. Please ask a question related to the document."
memory.save_context({"user_input": question}, {"answer": answer})
return {"chat_history": memory.chat_memory.messages, "answer": answer}
context = "\n".join([doc.page_content for doc in documents]) # Extract `page_content` from each Document
answer, score = qa_function(question, context)
# Define a threshold for confidence (e.g., 0.5)
if score < 0.5:
answer = "Sorry, I couldn't find relevant information in the document. Please ask a question related to the document."
memory.save_context({"user_input": question}, {"answer": answer})
return {"chat_history": memory.chat_memory.messages, "answer": answer}
return conversation_chain
# Generating response from user queries and displaying them accordingly
def handle_question(question):
response = st.session_state.conversation({'question': question})
st.session_state.chat_history = response["chat_history"]
for i, msg in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", msg.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", msg.content), unsafe_allow_html=True)
def main():
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("CSS Edge - Intelligent Document Chatbot :books:")
question = st.text_input("Ask a question from your document:")
if question:
handle_question(question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("Upload your PDF here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing..."):
# Get the PDF text
raw_text = get_pdf_text(docs)
# Get the text chunks
text_chunks = get_chunks(raw_text)
# Create vectorstore
vectorstore = get_vectorstore(text_chunks)
# Create conversation chain
st.session_state.conversation = get_conversationchain(vectorstore)
if __name__ == '__main__':
main()