Spaces:
Sleeping
title: Object Detection Lambda
emoji: π
colorFrom: purple
colorTo: green
sdk: gradio
sdk_version: 5.5.0
app_file: app.py
pinned: false
short_description: Object detection Lambda
Object detection via AWS Lambda
Aim: AI-driven object detection task
Architecture:
- Front-end: user interface via Gradio library
- Back-end: use of AWS Lambda function to run deployed ML model
You can try out our deployed Hugging Face Space!
Table of contents:
1. Local development
1.1. Build and run the Docker container
Step 1 - Building the docker image
bash
docker build -t object-detection-lambda .
Step 2 - Running the docker container locally
bash
docker run --name object-detection-lambda-cont -p 8080:8080 object-detection-lambda
1.2. Execution via user interface
Use of Gradio library for web interface
Note: The environment variable AWS_API
should point to the local container
export AWS_API=http://localhost:8080
Command line for execution:
python3 app.py
The Gradio web application should now be accessible at http://localhost:7860
1.3. Execution via command line:
Example of a prediction request
bash
encoded_image=$(base64 -i ./tests/data/boats.jpg)
curl -X POST "http://localhost:8080/2015-03-31/functions/function/invocations"
-H "Content-Type: application/json"
-d '{"body": "'"$encoded_image"'", "isBase64Encoded": true, "model":"yolos-small"}'
python
python3 inference_api.py
--api http://localhost:8080/2015-03-31/functions/function/invocations
--file ./tests/data/boats.jpg
--model yolos-small
2. Deployment to AWS
2.1. Pushing the docker container to AWS ECR
Steps:
- Create new ECR Repository via aws console
Example: object-detection-lambda
Optional for aws cli configuration (to run above commands):
aws configure
Authenticate Docker client to the Amazon ECR registry
aws ecr get-login-password --region | docker login --username AWS --password-stdin .dkr.ecr..amazonaws.com
Tag local docker image with the Amazon ECR registry and repository
docker tag object-detection-lambda:latest .dkr.ecr..amazonaws.com/object-detection-lambda:latest
Push docker image to ECR
docker push .dkr.ecr..amazonaws.com/object-detection-lambda:latest
2.2. Creating and testing a Lambda function
Steps:
- Create function from container image
Example name: object-detection
- Notes: the API endpoint will use the
lambda_function.py
file andlambda_hander
function - Test the lambda via the AWS console
Advanced notes:
- Steps to update the Lambda function with latest container via aws cli:
aws lambda update-function-code --function-name object-detection --image-uri .dkr.ecr..amazonaws.com/object-detection-lambda:latest
2.3. Creating a REST API via API Gateway
Steps:
- Create a new
Rest API
(e.g.object-detection-api
) - Add a new resource to the API (e.g.
/detect
) - Add a
POST
method to the resource - Integrate the Lambda function to the API
- Notes: currently using proxy integration option unchecked
- Deploy API with a specific stage (e.g.
dev
stage)
Example AWS API Endpoint:
https://<api_id>.execute-api.<aws_region>.amazonaws.com/dev/detect
2.4. Execution for deployed model
Example of a prediction request
bash
encoded_image=$(base64 -i ./tests/data/boats.jpg)
curl -X POST "https://.execute-api..amazonaws.com/dev/detect"
-H "Content-Type: application/json"
-d '{"body": "'"$encoded_image"'", "isBase64Encoded": true, "model":"yolos-small"}'
python
python3 inference_api.py
--api https://.execute-api..amazonaws.com/dev/detect
--file ./tests/data/boats.jpg
--model yolos-small
3. Deployment to Hugging Face
This web application is available on Hugging Face
Hugging Face space URL: https://huggingface.co./spaces/cvachet/object_detection_lambda
Note: This space uses the ML model deployed on AWS Lambda