Clement Vachet
doc: add menu and deployment section
25e9ef7
---
title: Object Detection
emoji: 🖼
colorFrom: green
colorTo: purple
sdk: gradio
sdk_version: 5.5.0
app_file: app.py
pinned: false
short_description: Object detection via Gradio
---
# Object detection
Aim: AI-driven object detection (on COCO image dataset)
Machine learning models:
- facebook/detr-resnet-50,
- facebook/detr-resnet-101,
- hustvl/yolos-tiny,
- hustvl/yolos-small
### <b>Table of contents:</b>
- [Execution via command line](#1-execution-via-command-line)
- [Execution via User Interface ](#2-execution-via-user-interface)
- [Execution via Gradio client API](#3-execution-via-gradio-client-api)
- [Deployment on Hugging Face](#4-deployment-on-hugging-face)
- [Deployment on Docker Hub](#5-deployment-on-docker-hub)
## 1. Execution via command line
### 1.1. Use of torch library
> python detect_torch.py
### 1.2. Use of transformers library
> python detect_transformers.py
### 1.3. Use of HuggingFace pipeline library
> python detect_pipeline.py
## 2. Execution via User Interface
Use of Gradio library for web interface
Command line:
> python app.py
<b>Note:</b> The Gradio app should now be accessible at http://localhost:7860
## 3. Execution via Gradio client API
<b>Note:</b> Use of existing Gradio server (running locally, in a Docker container, or in the cloud as a HuggingFace space or AWS)
### 3.1. Creation of docker container
Command lines:
> sudo docker build -t gradio-app .
> sudo docker run -p 7860:7860 gradio-app
The Gradio app should now be accessible at http://localhost:7860
### 3.2. Direct inference via API
Command line:
> python inference_API.py
## 4. Deployment on Hugging Face
This web application is available on Hugging Face, via a Gradio space
URL: https://huggingface.co./spaces/cvachet/object_detection_gradio
## 5. Deployment on Docker Hub
This web application is available as a container on Docker Hub
URL: https://hub.docker.com/r/cvachet/object-detection-gradio