Spaces:
Runtime error
Runtime error
""" Transformer in Transformer (TNT) in PyTorch | |
A PyTorch implement of TNT as described in | |
'Transformer in Transformer' - https://arxiv.org/abs/2103.00112 | |
The official mindspore code is released and available at | |
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from timm.models.helpers import build_model_with_cfg | |
from timm.models.layers import Mlp, DropPath, trunc_normal_ | |
from timm.models.layers.helpers import to_2tuple | |
from timm.models.registry import register_model | |
from timm.models.vision_transformer import resize_pos_embed | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'pixel_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
'tnt_s_patch16_224': _cfg( | |
url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
), | |
'tnt_b_patch16_224': _cfg( | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
), | |
} | |
class Attention(nn.Module): | |
""" Multi-Head Attention | |
""" | |
def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.hidden_dim = hidden_dim | |
self.num_heads = num_heads | |
head_dim = hidden_dim // num_heads | |
self.head_dim = head_dim | |
self.scale = head_dim ** -0.5 | |
self.qk = nn.Linear(dim, hidden_dim * 2, bias=qkv_bias) | |
self.v = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop, inplace=True) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop, inplace=True) | |
def forward(self, x): | |
B, N, C = x.shape | |
qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
q, k = qk[0], qk[1] # make torchscript happy (cannot use tensor as tuple) | |
v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
""" TNT Block | |
""" | |
def __init__(self, dim, in_dim, num_pixel, num_heads=12, in_num_head=4, mlp_ratio=4., | |
qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
# Inner transformer | |
self.norm_in = norm_layer(in_dim) | |
self.attn_in = Attention( | |
in_dim, in_dim, num_heads=in_num_head, qkv_bias=qkv_bias, | |
attn_drop=attn_drop, proj_drop=drop) | |
self.norm_mlp_in = norm_layer(in_dim) | |
self.mlp_in = Mlp(in_features=in_dim, hidden_features=int(in_dim * 4), | |
out_features=in_dim, act_layer=act_layer, drop=drop) | |
self.norm1_proj = norm_layer(in_dim) | |
self.proj = nn.Linear(in_dim * num_pixel, dim, bias=True) | |
# Outer transformer | |
self.norm_out = norm_layer(dim) | |
self.attn_out = Attention( | |
dim, dim, num_heads=num_heads, qkv_bias=qkv_bias, | |
attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm_mlp = norm_layer(dim) | |
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), | |
out_features=dim, act_layer=act_layer, drop=drop) | |
def forward(self, pixel_embed, patch_embed): | |
# inner | |
pixel_embed = pixel_embed + self.drop_path(self.attn_in(self.norm_in(pixel_embed))) | |
pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed))) | |
# outer | |
B, N, C = patch_embed.size() | |
patch_embed[:, 1:] = patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1)) | |
patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed))) | |
patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed))) | |
return pixel_embed, patch_embed | |
class PixelEmbed(nn.Module): | |
""" Image to Pixel Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
# grid_size property necessary for resizing positional embedding | |
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
num_patches = (self.grid_size[0]) * (self.grid_size[1]) | |
self.img_size = img_size | |
self.num_patches = num_patches | |
self.in_dim = in_dim | |
new_patch_size = [math.ceil(ps / stride) for ps in patch_size] | |
self.new_patch_size = new_patch_size | |
self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride) | |
self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size) | |
def forward(self, x, pixel_pos): | |
B, C, H, W = x.shape | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x) | |
x = self.unfold(x) | |
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1]) | |
x = x + pixel_pos | |
x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2) | |
return x | |
class TNT(nn.Module): | |
""" Transformer in Transformer - https://arxiv.org/abs/2103.00112 | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, in_dim=48, depth=12, | |
num_heads=12, in_num_head=4, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., norm_layer=nn.LayerNorm, first_stride=4): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.pixel_embed = PixelEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, in_dim=in_dim, stride=first_stride) | |
num_patches = self.pixel_embed.num_patches | |
self.num_patches = num_patches | |
new_patch_size = self.pixel_embed.new_patch_size | |
num_pixel = new_patch_size[0] * new_patch_size[1] | |
self.norm1_proj = norm_layer(num_pixel * in_dim) | |
self.proj = nn.Linear(num_pixel * in_dim, embed_dim) | |
self.norm2_proj = norm_layer(embed_dim) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pixel_pos = nn.Parameter(torch.zeros(1, in_dim, new_patch_size[0], new_patch_size[1])) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
blocks = [] | |
for i in range(depth): | |
blocks.append(Block( | |
dim=embed_dim, in_dim=in_dim, num_pixel=num_pixel, num_heads=num_heads, in_num_head=in_num_head, | |
mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, | |
drop_path=dpr[i], norm_layer=norm_layer)) | |
self.blocks = nn.ModuleList(blocks) | |
self.norm = norm_layer(embed_dim) | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.cls_token, std=.02) | |
trunc_normal_(self.patch_pos, std=.02) | |
trunc_normal_(self.pixel_pos, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'patch_pos', 'pixel_pos', 'cls_token'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
B = x.shape[0] | |
pixel_embed = self.pixel_embed(x, self.pixel_pos) | |
patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1)))) | |
patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1) | |
patch_embed = patch_embed + self.patch_pos | |
patch_embed = self.pos_drop(patch_embed) | |
for blk in self.blocks: | |
pixel_embed, patch_embed = blk(pixel_embed, patch_embed) | |
patch_embed = self.norm(patch_embed) | |
return patch_embed[:, 0] | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def checkpoint_filter_fn(state_dict, model): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
if state_dict['patch_pos'].shape != model.patch_pos.shape: | |
state_dict['patch_pos'] = resize_pos_embed(state_dict['patch_pos'], | |
model.patch_pos, getattr(model, 'num_tokens', 1), model.pixel_embed.grid_size) | |
return state_dict | |
def _create_tnt(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg( | |
TNT, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
pretrained_filter_fn=checkpoint_filter_fn, | |
**kwargs) | |
return model | |
def tnt_s_patch16_224(pretrained=False, **kwargs): | |
model_cfg = dict( | |
patch_size=16, embed_dim=384, in_dim=24, depth=12, num_heads=6, in_num_head=4, | |
qkv_bias=False, **kwargs) | |
model = _create_tnt('tnt_s_patch16_224', pretrained=pretrained, **model_cfg) | |
return model | |
def tnt_b_patch16_224(pretrained=False, **kwargs): | |
model_cfg = dict( | |
patch_size=16, embed_dim=640, in_dim=40, depth=12, num_heads=10, in_num_head=4, | |
qkv_bias=False, **kwargs) | |
model = _create_tnt('tnt_b_patch16_224', pretrained=pretrained, **model_cfg) | |
return model | |