File size: 11,024 Bytes
a6dac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
""" Transformer in Transformer (TNT) in PyTorch

A PyTorch implement of TNT as described in
'Transformer in Transformer' - https://arxiv.org/abs/2103.00112

The official mindspore code is released and available at
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT
"""
import math
import torch
import torch.nn as nn
from functools import partial

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import build_model_with_cfg
from timm.models.layers import Mlp, DropPath, trunc_normal_
from timm.models.layers.helpers import to_2tuple
from timm.models.registry import register_model
from timm.models.vision_transformer import resize_pos_embed


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'pixel_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    'tnt_s_patch16_224': _cfg(
        url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
    ),
    'tnt_b_patch16_224': _cfg(
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
    ),
}


class Attention(nn.Module):
    """ Multi-Head Attention
    """
    def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        head_dim = hidden_dim // num_heads
        self.head_dim = head_dim
        self.scale = head_dim ** -0.5

        self.qk = nn.Linear(dim, hidden_dim * 2, bias=qkv_bias)
        self.v = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop, inplace=True)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop, inplace=True)

    def forward(self, x):
        B, N, C = x.shape
        qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k = qk[0], qk[1]   # make torchscript happy (cannot use tensor as tuple)
        v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    """ TNT Block
    """
    def __init__(self, dim, in_dim, num_pixel, num_heads=12, in_num_head=4, mlp_ratio=4.,
            qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        # Inner transformer
        self.norm_in = norm_layer(in_dim)
        self.attn_in = Attention(
            in_dim, in_dim, num_heads=in_num_head, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)
        
        self.norm_mlp_in = norm_layer(in_dim)
        self.mlp_in = Mlp(in_features=in_dim, hidden_features=int(in_dim * 4),
            out_features=in_dim, act_layer=act_layer, drop=drop)
        
        self.norm1_proj = norm_layer(in_dim)
        self.proj = nn.Linear(in_dim * num_pixel, dim, bias=True)
        # Outer transformer
        self.norm_out = norm_layer(dim)
        self.attn_out = Attention(
            dim, dim, num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.norm_mlp = norm_layer(dim)
        self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio),
            out_features=dim, act_layer=act_layer, drop=drop)

    def forward(self, pixel_embed, patch_embed):
        # inner
        pixel_embed = pixel_embed + self.drop_path(self.attn_in(self.norm_in(pixel_embed)))
        pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed)))
        # outer
        B, N, C = patch_embed.size()
        patch_embed[:, 1:] = patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))
        patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed)))
        patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
        return pixel_embed, patch_embed


class PixelEmbed(nn.Module):
    """ Image to Pixel Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        # grid_size property necessary for resizing positional embedding
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        num_patches = (self.grid_size[0]) * (self.grid_size[1])
        self.img_size = img_size
        self.num_patches = num_patches
        self.in_dim = in_dim
        new_patch_size = [math.ceil(ps / stride) for ps in patch_size]
        self.new_patch_size = new_patch_size

        self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride)
        self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size)

    def forward(self, x, pixel_pos):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        x = self.unfold(x)
        x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
        x = x + pixel_pos
        x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2)
        return x


class TNT(nn.Module):
    """ Transformer in Transformer - https://arxiv.org/abs/2103.00112
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, in_dim=48, depth=12,
                 num_heads=12, in_num_head=4, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, first_stride=4):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.pixel_embed = PixelEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, in_dim=in_dim, stride=first_stride)
        num_patches = self.pixel_embed.num_patches
        self.num_patches = num_patches
        new_patch_size = self.pixel_embed.new_patch_size
        num_pixel = new_patch_size[0] * new_patch_size[1]
        
        self.norm1_proj = norm_layer(num_pixel * in_dim)
        self.proj = nn.Linear(num_pixel * in_dim, embed_dim)
        self.norm2_proj = norm_layer(embed_dim)

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pixel_pos = nn.Parameter(torch.zeros(1, in_dim, new_patch_size[0], new_patch_size[1]))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        blocks = []
        for i in range(depth):
            blocks.append(Block(
                dim=embed_dim, in_dim=in_dim, num_pixel=num_pixel, num_heads=num_heads, in_num_head=in_num_head,
                mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[i], norm_layer=norm_layer))
        self.blocks = nn.ModuleList(blocks)
        self.norm = norm_layer(embed_dim)

        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.cls_token, std=.02)
        trunc_normal_(self.patch_pos, std=.02)
        trunc_normal_(self.pixel_pos, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'patch_pos', 'pixel_pos', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        pixel_embed = self.pixel_embed(x, self.pixel_pos)
        
        patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1))))
        patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1)
        patch_embed = patch_embed + self.patch_pos
        patch_embed = self.pos_drop(patch_embed)

        for blk in self.blocks:
            pixel_embed, patch_embed = blk(pixel_embed, patch_embed)

        patch_embed = self.norm(patch_embed)
        return patch_embed[:, 0]

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def checkpoint_filter_fn(state_dict, model):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    if state_dict['patch_pos'].shape != model.patch_pos.shape:
        state_dict['patch_pos'] = resize_pos_embed(state_dict['patch_pos'],
            model.patch_pos, getattr(model, 'num_tokens', 1), model.pixel_embed.grid_size)
    return state_dict


def _create_tnt(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    model = build_model_with_cfg(
        TNT, variant, pretrained,
        default_cfg=default_cfgs[variant],
        pretrained_filter_fn=checkpoint_filter_fn,
        **kwargs)
    return model


@register_model
def tnt_s_patch16_224(pretrained=False, **kwargs):
    model_cfg = dict(
        patch_size=16, embed_dim=384, in_dim=24, depth=12, num_heads=6, in_num_head=4,
        qkv_bias=False, **kwargs)
    model = _create_tnt('tnt_s_patch16_224', pretrained=pretrained, **model_cfg)
    return model


@register_model
def tnt_b_patch16_224(pretrained=False, **kwargs):
    model_cfg = dict(
        patch_size=16, embed_dim=640, in_dim=40, depth=12, num_heads=10, in_num_head=4,
        qkv_bias=False, **kwargs)
    model = _create_tnt('tnt_b_patch16_224', pretrained=pretrained, **model_cfg)
    return model