Spaces:
Runtime error
Runtime error
File size: 10,141 Bytes
a7f6109 c7f3c38 a7f6109 f546e60 a7f6109 c7f3c38 a7f6109 54cbe20 a7f6109 54cbe20 a7f6109 54cbe20 a7f6109 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
print("WARNING: You are running this unofficial E2/F5 TTS demo locally, it may not be as up-to-date as the hosted version (https://huggingface.co./spaces/mrfakename/E2-F5-TTS)")
import os
import re
import torch
import torchaudio
import gradio as gr
import numpy as np
import tempfile
from einops import rearrange
from ema_pytorch import EMA
from vocos import Vocos
from pydub import AudioSegment
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
get_tokenizer,
convert_char_to_pinyin,
save_spectrogram,
)
from transformers import pipeline
import librosa
import re
import gc
import matplotlib.pyplot as plt
import devicetorch
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
gc.collect()
devicetorch.empty_cache(torch)
print(f"Using {device} device")
# --------------------- Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = 'euler'
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27 # None or float (duration in seconds)
fix_duration = None
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
checkpoint = torch.load(str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(
**model_cfg,
text_num_embeds=vocab_size,
mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
ema_model = EMA(model, include_online_model=False).to(device)
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
ema_model.copy_params_from_ema_to_model()
return model
# load models
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
def chunk_text(text, max_chars=200):
chunks = []
current_chunk = ""
sentences = re.split(r'(?<=[.!?])\s+', text)
for sentence in sentences:
if len(current_chunk) + len(sentence) <= max_chars:
current_chunk += sentence + " "
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " "
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def save_spectrogram(y, sr, path):
plt.figure(figsize=(10, 4))
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='hz')
plt.colorbar(format='%+2.0f dB')
plt.title('Spectrogram')
plt.tight_layout()
plt.savefig(path)
plt.close()
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence):
print(gen_text)
chunks = chunk_text(gen_text)
if not chunks:
raise gr.Error("Please enter some text to generate.")
# Convert reference audio
gr.Info("Converting reference audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
aseg = aseg.set_channels(1)
audio_duration = len(aseg)
if audio_duration > 15000:
gr.Warning("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
# Select model
if exp_name == "F5-TTS":
ema_model = F5TTS_ema_model
# base_model = F5TTS_base_model
elif exp_name == "E2-TTS":
ema_model = E2TTS_ema_model
# base_model = E2TTS_base_model
# Transcribe reference audio if needed
if not ref_text.strip():
gr.Info("No reference text provided, transcribing reference audio...")
# Initialize Whisper model
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-Turbo", # You can set this to large-V3 if you want better quality, but VRAM then goes to 10 GB
torch_dtype=torch.float16,
device=device,
)
ref_text = pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)['text'].strip()
print("\nTranscribed text: ", ref_text) # Degug transcribing quality
gr.Info("\nFinished transcription")
# Release Whisper model
del pipe
devicetorch.empty_cache(torch)
gc.collect()
else:
gr.Info("Using custom reference text...")
# Load and preprocess reference audio
audio, sr = torchaudio.load(ref_audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True) # convert to mono
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
# Process each chunk
results = []
spectrograms = []
for i, chunk in enumerate(chunks):
gr.Info(f"Processing chunk {i+1}/{len(chunks)}: {chunk[:30]}...")
# Prepare the text
text_list = [ref_text + chunk]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
ref_audio_len = audio.shape[-1] // hop_length
zh_pause_punc = r"。,、;:?!"
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
gen_text_len = len(chunk) + len(re.findall(zh_pause_punc, chunk))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# Inference
gr.Info(f"Generating audio using {exp_name}")
with torch.inference_mode():
generated, _ = ema_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
# Clear unnecessary tensors
del generated
devicetorch.empty_cache(torch)
gr.Info("Running vocoder")
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# Convert to numpy and clear GPU tensors
generated_wave = generated_wave.squeeze().cpu().numpy()
del generated_mel_spec
devicetorch.empty_cache(torch)
results.append(generated_wave)
# Generate spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(generated_wave, target_sample_rate, spectrogram_path)
spectrograms.append(spectrogram_path)
# Clear cache after processing each chunk
gc.collect()
devicetorch.empty_cache(torch)
# Combine all audio chunks
combined_audio = np.concatenate(results)
if remove_silence:
gr.Info("Removing audio silences... This may take a moment")
non_silent_intervals = librosa.effects.split(combined_audio, top_db=30)
non_silent_wave = np.array([])
for interval in non_silent_intervals:
start, end = interval
non_silent_wave = np.concatenate([non_silent_wave, combined_audio[start:end]])
combined_audio = non_silent_wave
# Generate final spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
final_spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_audio, target_sample_rate, final_spectrogram_path)
# Final cleanup
gc.collect()
devicetorch.empty_cache(torch)
# Return combined audio and the final spectrogram
return (target_sample_rate, combined_audio), final_spectrogram_path
with gr.Blocks() as app:
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate (for longer than 200 chars the app uses chunking)", lines=4)
model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(label="Reference Text", info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", lines=2)
remove_silence = gr.Checkbox(label="Remove Silences", info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", value=True)
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output, spectrogram_output])
gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")
app.queue().launch()
|