cocktailpeanut commited on
Commit
a7f6109
1 Parent(s): 441eb78
Files changed (1) hide show
  1. app2.py +276 -0
app2.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print("WARNING: You are running this unofficial E2/F5 TTS demo locally, it may not be as up-to-date as the hosted version (https://huggingface.co/spaces/mrfakename/E2-F5-TTS)")
2
+
3
+ import os
4
+ import re
5
+ import torch
6
+ import torchaudio
7
+ import gradio as gr
8
+ import numpy as np
9
+ import tempfile
10
+ from einops import rearrange
11
+ from ema_pytorch import EMA
12
+ from vocos import Vocos
13
+ from pydub import AudioSegment
14
+ from model import CFM, UNetT, DiT, MMDiT
15
+ from cached_path import cached_path
16
+ from model.utils import (
17
+ get_tokenizer,
18
+ convert_char_to_pinyin,
19
+ save_spectrogram,
20
+ )
21
+ from transformers import pipeline
22
+ import librosa
23
+ import re
24
+ import gc
25
+ import matplotlib.pyplot as plt
26
+ import devicetorch
27
+
28
+ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
29
+
30
+ gc.collect()
31
+ devicetorch.empty_cache(torch)
32
+
33
+ print(f"Using {device} device")
34
+
35
+
36
+ # --------------------- Settings -------------------- #
37
+
38
+ target_sample_rate = 24000
39
+ n_mel_channels = 100
40
+ hop_length = 256
41
+ target_rms = 0.1
42
+ nfe_step = 32 # 16, 32
43
+ cfg_strength = 2.0
44
+ ode_method = 'euler'
45
+ sway_sampling_coef = -1.0
46
+ speed = 1.0
47
+ # fix_duration = 27 # None or float (duration in seconds)
48
+ fix_duration = None
49
+
50
+ def load_model(exp_name, model_cls, model_cfg, ckpt_step):
51
+ checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
52
+ vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
53
+ model = CFM(
54
+ transformer=model_cls(
55
+ **model_cfg,
56
+ text_num_embeds=vocab_size,
57
+ mel_dim=n_mel_channels
58
+ ),
59
+ mel_spec_kwargs=dict(
60
+ target_sample_rate=target_sample_rate,
61
+ n_mel_channels=n_mel_channels,
62
+ hop_length=hop_length,
63
+ ),
64
+ odeint_kwargs=dict(
65
+ method=ode_method,
66
+ ),
67
+ vocab_char_map=vocab_char_map,
68
+ ).to(device)
69
+
70
+ ema_model = EMA(model, include_online_model=False).to(device)
71
+ ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
72
+ ema_model.copy_params_from_ema_to_model()
73
+
74
+ return ema_model, model
75
+
76
+ # load models
77
+ F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
78
+ E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
79
+
80
+ F5TTS_ema_model, F5TTS_base_model = load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
81
+ E2TTS_ema_model, E2TTS_base_model = load_model("E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
82
+
83
+ def chunk_text(text, max_chars=200):
84
+ chunks = []
85
+ current_chunk = ""
86
+ sentences = re.split(r'(?<=[.!?])\s+', text)
87
+
88
+ for sentence in sentences:
89
+ if len(current_chunk) + len(sentence) <= max_chars:
90
+ current_chunk += sentence + " "
91
+ else:
92
+ if current_chunk:
93
+ chunks.append(current_chunk.strip())
94
+ current_chunk = sentence + " "
95
+
96
+ if current_chunk:
97
+ chunks.append(current_chunk.strip())
98
+
99
+ return chunks
100
+
101
+ def save_spectrogram(y, sr, path):
102
+ plt.figure(figsize=(10, 4))
103
+ D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
104
+ librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='hz')
105
+ plt.colorbar(format='%+2.0f dB')
106
+ plt.title('Spectrogram')
107
+ plt.tight_layout()
108
+ plt.savefig(path)
109
+ plt.close()
110
+
111
+ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence):
112
+ print(gen_text)
113
+ chunks = chunk_text(gen_text)
114
+
115
+ if not chunks:
116
+ raise gr.Error("Please enter some text to generate.")
117
+
118
+ # Convert reference audio
119
+ gr.Info("Converting reference audio...")
120
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
121
+ aseg = AudioSegment.from_file(ref_audio_orig)
122
+ aseg = aseg.set_channels(1)
123
+ audio_duration = len(aseg)
124
+ if audio_duration > 15000:
125
+ gr.Warning("Audio is over 15s, clipping to only first 15s.")
126
+ aseg = aseg[:15000]
127
+ aseg.export(f.name, format="wav")
128
+ ref_audio = f.name
129
+
130
+ # Select model
131
+ if exp_name == "F5-TTS":
132
+ ema_model = F5TTS_ema_model
133
+ base_model = F5TTS_base_model
134
+ elif exp_name == "E2-TTS":
135
+ ema_model = E2TTS_ema_model
136
+ base_model = E2TTS_base_model
137
+
138
+ # Transcribe reference audio if needed
139
+ if not ref_text.strip():
140
+ gr.Info("No reference text provided, transcribing reference audio...")
141
+ # Initialize Whisper model
142
+ pipe = pipeline(
143
+ "automatic-speech-recognition",
144
+ model="openai/whisper-large-v3-Turbo", # You can set this to large-V3 if you want better quality, but VRAM then goes to 10 GB
145
+ torch_dtype=torch.float16,
146
+ device=device,
147
+ )
148
+ ref_text = pipe(
149
+ ref_audio,
150
+ chunk_length_s=30,
151
+ batch_size=128,
152
+ generate_kwargs={"task": "transcribe"},
153
+ return_timestamps=False,
154
+ )['text'].strip()
155
+ print("\nTranscribed text: ", ref_text) # Degug transcribing quality
156
+ gr.Info("\nFinished transcription")
157
+ # Release Whisper model
158
+ del pipe
159
+ devicetorch.empty_cache(torch)
160
+ gc.collect()
161
+ else:
162
+ gr.Info("Using custom reference text...")
163
+
164
+ # Load and preprocess reference audio
165
+ audio, sr = torchaudio.load(ref_audio)
166
+ if audio.shape[0] > 1:
167
+ audio = torch.mean(audio, dim=0, keepdim=True) # convert to mono
168
+ rms = torch.sqrt(torch.mean(torch.square(audio)))
169
+ if rms < target_rms:
170
+ audio = audio * target_rms / rms
171
+ if sr != target_sample_rate:
172
+ resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
173
+ audio = resampler(audio)
174
+ audio = audio.to(device)
175
+
176
+ # Process each chunk
177
+ results = []
178
+ spectrograms = []
179
+
180
+ for i, chunk in enumerate(chunks):
181
+ gr.Info(f"Processing chunk {i+1}/{len(chunks)}: {chunk[:30]}...")
182
+
183
+ # Prepare the text
184
+ text_list = [ref_text + chunk]
185
+ final_text_list = convert_char_to_pinyin(text_list)
186
+
187
+ # Calculate duration
188
+ ref_audio_len = audio.shape[-1] // hop_length
189
+ zh_pause_punc = r"。,、;:?!"
190
+ ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
191
+ gen_text_len = len(chunk) + len(re.findall(zh_pause_punc, chunk))
192
+ duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
193
+
194
+ # Inference
195
+ gr.Info(f"Generating audio using {exp_name}")
196
+ with torch.inference_mode():
197
+ generated, _ = base_model.sample(
198
+ cond=audio,
199
+ text=final_text_list,
200
+ duration=duration,
201
+ steps=nfe_step,
202
+ cfg_strength=cfg_strength,
203
+ sway_sampling_coef=sway_sampling_coef,
204
+ )
205
+
206
+ generated = generated[:, ref_audio_len:, :]
207
+ generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
208
+
209
+ # Clear unnecessary tensors
210
+ del generated
211
+ devicetorch.empty_cache(torch)
212
+
213
+ gr.Info("Running vocoder")
214
+ vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
215
+ generated_wave = vocos.decode(generated_mel_spec.cpu())
216
+ if rms < target_rms:
217
+ generated_wave = generated_wave * rms / target_rms
218
+
219
+ # Convert to numpy and clear GPU tensors
220
+ generated_wave = generated_wave.squeeze().cpu().numpy()
221
+ del generated_mel_spec
222
+ devicetorch.empty_cache(torch)
223
+
224
+ results.append(generated_wave)
225
+
226
+ # Generate spectrogram
227
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
228
+ spectrogram_path = tmp_spectrogram.name
229
+ save_spectrogram(generated_wave, target_sample_rate, spectrogram_path)
230
+ spectrograms.append(spectrogram_path)
231
+
232
+ # Clear cache after processing each chunk
233
+ gc.collect()
234
+ devicetorch.empty_cache(torch)
235
+
236
+ # Combine all audio chunks
237
+ combined_audio = np.concatenate(results)
238
+
239
+ if remove_silence:
240
+ gr.Info("Removing audio silences... This may take a moment")
241
+ non_silent_intervals = librosa.effects.split(combined_audio, top_db=30)
242
+ non_silent_wave = np.array([])
243
+ for interval in non_silent_intervals:
244
+ start, end = interval
245
+ non_silent_wave = np.concatenate([non_silent_wave, combined_audio[start:end]])
246
+ combined_audio = non_silent_wave
247
+
248
+ # Generate final spectrogram
249
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
250
+ final_spectrogram_path = tmp_spectrogram.name
251
+ save_spectrogram(combined_audio, target_sample_rate, final_spectrogram_path)
252
+
253
+ # Final cleanup
254
+ gc.collect()
255
+ devicetorch.empty_cache(torch)
256
+
257
+ # Return combined audio and the final spectrogram
258
+ return (target_sample_rate, combined_audio), final_spectrogram_path
259
+
260
+ with gr.Blocks() as app:
261
+ ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
262
+ gen_text_input = gr.Textbox(label="Text to Generate (for longer than 200 chars the app uses chunking)", lines=4)
263
+ model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
264
+ generate_btn = gr.Button("Synthesize", variant="primary")
265
+ with gr.Accordion("Advanced Settings", open=False):
266
+ ref_text_input = gr.Textbox(label="Reference Text", info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", lines=2)
267
+ remove_silence = gr.Checkbox(label="Remove Silences", info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", value=True)
268
+
269
+ audio_output = gr.Audio(label="Synthesized Audio")
270
+ spectrogram_output = gr.Image(label="Spectrogram")
271
+
272
+ generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output, spectrogram_output])
273
+ gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")
274
+
275
+
276
+ app.queue().launch()