|
import gradio as gr |
|
import torch |
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline |
|
|
|
import os |
|
from numpy import exp |
|
import pandas as pd |
|
from PIL import Image |
|
import urllib.request |
|
import uuid |
|
uid=uuid.uuid4() |
|
|
|
models=[ |
|
"cmckinle/sdxl-flux-detector", |
|
"umm-maybe/AI-image-detector", |
|
"Organika/sdxl-detector", |
|
|
|
] |
|
|
|
pipe0 = pipeline("image-classification", f"{models[0]}") |
|
pipe1 = pipeline("image-classification", f"{models[1]}") |
|
pipe2 = pipeline("image-classification", f"{models[2]}") |
|
|
|
|
|
fin_sum=[] |
|
def image_classifier0(image): |
|
labels = ["AI","Real"] |
|
outputs = pipe0(image) |
|
results = {} |
|
result_test={} |
|
for idx,result in enumerate(outputs): |
|
results[labels[idx]] = outputs[idx]['score'] |
|
|
|
|
|
|
|
|
|
fin_sum.append(results) |
|
return results |
|
def image_classifier1(image): |
|
labels = ["AI","Real"] |
|
outputs = pipe1(image) |
|
results = {} |
|
result_test={} |
|
for idx,result in enumerate(outputs): |
|
results[labels[idx]] = outputs[idx]['score'] |
|
|
|
|
|
|
|
|
|
fin_sum.append(results) |
|
return results |
|
def image_classifier2(image): |
|
labels = ["AI","Real"] |
|
outputs = pipe2(image) |
|
results = {} |
|
result_test={} |
|
for idx,result in enumerate(outputs): |
|
results[labels[idx]] = outputs[idx]['score'] |
|
|
|
|
|
|
|
|
|
fin_sum.append(results) |
|
return results |
|
|
|
def softmax(vector): |
|
e = exp(vector) |
|
return e / e.sum() |
|
|
|
|
|
|
|
def aiornot0(image): |
|
labels = ["AI", "Real"] |
|
mod=models[0] |
|
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) |
|
model0 = AutoModelForImageClassification.from_pretrained(mod) |
|
input = feature_extractor0(image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model0(**input) |
|
logits = outputs.logits |
|
probability = softmax(logits) |
|
px = pd.DataFrame(probability.numpy()) |
|
prediction = logits.argmax(-1).item() |
|
label = labels[prediction] |
|
html_out = f""" |
|
<h1>This image is likely: {label}</h1><br><h3> |
|
|
|
Probabilites:<br> |
|
Real: {px[1][0]}<br> |
|
AI: {px[0][0]}""" |
|
results = {} |
|
for idx,result in enumerate(px): |
|
results[labels[idx]] = px[idx][0] |
|
|
|
fin_sum.append(results) |
|
return gr.HTML.update(html_out),results |
|
def aiornot1(image): |
|
labels = ["AI", "Real"] |
|
mod=models[1] |
|
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) |
|
model1 = AutoModelForImageClassification.from_pretrained(mod) |
|
input = feature_extractor1(image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model1(**input) |
|
logits = outputs.logits |
|
probability = softmax(logits) |
|
px = pd.DataFrame(probability.numpy()) |
|
prediction = logits.argmax(-1).item() |
|
label = labels[prediction] |
|
html_out = f""" |
|
<h1>This image is likely: {label}</h1><br><h3> |
|
|
|
Probabilites:<br> |
|
Real: {px[1][0]}<br> |
|
AI: {px[0][0]}""" |
|
results = {} |
|
for idx,result in enumerate(px): |
|
results[labels[idx]] = px[idx][0] |
|
|
|
fin_sum.append(results) |
|
return gr.HTML.update(html_out),results |
|
def aiornot2(image): |
|
labels = ["Real", "AI"] |
|
mod=models[2] |
|
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod) |
|
|
|
model2 = AutoModelForImageClassification.from_pretrained(mod) |
|
input = feature_extractor2(image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model2(**input) |
|
logits = outputs.logits |
|
probability = softmax(logits) |
|
px = pd.DataFrame(probability.numpy()) |
|
prediction = logits.argmax(-1).item() |
|
label = labels[prediction] |
|
html_out = f""" |
|
<h1>This image is likely: {label}</h1><br><h3> |
|
|
|
Probabilites:<br> |
|
Real: {px[0][0]}<br> |
|
AI: {px[1][0]}""" |
|
|
|
results = {} |
|
for idx,result in enumerate(px): |
|
results[labels[idx]] = px[idx][0] |
|
|
|
fin_sum.append(results) |
|
|
|
return gr.HTML.update(html_out),results |
|
|
|
def load_url(url): |
|
try: |
|
urllib.request.urlretrieve( |
|
f'{url}', |
|
f"{uid}tmp_im.png") |
|
image = Image.open(f"{uid}tmp_im.png") |
|
mes = "Image Loaded" |
|
except Exception as e: |
|
image=None |
|
mes=f"Image not Found<br>Error: {e}" |
|
return image,mes |
|
|
|
def tot_prob(): |
|
try: |
|
fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"] |
|
fin_out = fin_out/6 |
|
fin_sub = 1-fin_out |
|
out={ |
|
"Real":f"{fin_out}", |
|
"AI":f"{fin_sub}" |
|
} |
|
|
|
|
|
return out |
|
except Exception as e: |
|
pass |
|
print (e) |
|
return None |
|
def fin_clear(): |
|
fin_sum.clear() |
|
return None |
|
|
|
def upd(image): |
|
print (image) |
|
rand_im = uuid.uuid4() |
|
image.save(f"{rand_im}-vid_tmp_proc.png") |
|
out = Image.open(f"{rand_im}-vid_tmp_proc.png") |
|
|
|
|
|
|
|
|
|
|
|
return out |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""") |
|
with gr.Column(): |
|
inp = gr.Image(type='pil') |
|
in_url=gr.Textbox(label="Image URL") |
|
with gr.Row(): |
|
load_btn=gr.Button("Load URL") |
|
btn = gr.Button("Detect AI") |
|
mes = gr.HTML("""""") |
|
with gr.Group(): |
|
with gr.Row(): |
|
fin=gr.Label(label="Final Probability") |
|
with gr.Row(): |
|
with gr.Box(): |
|
lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[0]}'>{models[0]}</a></b>""") |
|
nun0 = gr.HTML("""""") |
|
with gr.Box(): |
|
lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[1]}'>{models[1]}</a></b>""") |
|
nun1 = gr.HTML("""""") |
|
with gr.Box(): |
|
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[2]}'>{models[2]}</a></b>""") |
|
nun2 = gr.HTML("""""") |
|
|
|
with gr.Row(): |
|
with gr.Box(): |
|
n_out0=gr.Label(label="Output") |
|
outp0 = gr.HTML("""""") |
|
with gr.Box(): |
|
n_out1=gr.Label(label="Output") |
|
outp1 = gr.HTML("""""") |
|
with gr.Box(): |
|
n_out2=gr.Label(label="Output") |
|
outp2 = gr.HTML("""""") |
|
with gr.Row(): |
|
with gr.Box(): |
|
n_out3=gr.Label(label="Output") |
|
outp3 = gr.HTML("""""") |
|
with gr.Box(): |
|
n_out4=gr.Label(label="Output") |
|
outp4 = gr.HTML("""""") |
|
with gr.Box(): |
|
n_out5=gr.Label(label="Output") |
|
outp5 = gr.HTML("""""") |
|
hid_box=gr.Textbox(visible=False) |
|
hid_im = gr.Image(type="pil",visible=False) |
|
def echo(inp): |
|
return inp |
|
|
|
|
|
|
|
btn.click(fin_clear,None,fin,show_progress=False) |
|
load_btn.click(load_url,in_url,[inp,mes]) |
|
|
|
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False) |
|
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False) |
|
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False) |
|
|
|
btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False) |
|
btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False) |
|
btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False) |
|
|
|
app.launch(show_api=False,max_threads=24) |